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Abstract

We adopt mechanism design to study the long-run consequences of inflation on aggregate
output, trade, and welfare. Our theory captures multiple channels for individuals to respond
to the inflation tax: search intensity (the intensive margin), market participation (the extensive
margin), and substitution between money and a higher return asset. To determine the terms of
trade in pairwise meetings, we consider socially optimal allocations that are individually rational
and immune to pairwise defection. We characterize constrained efficient allocations and show
that inflation has non-monotonic effects on both the frequency of trades and the total quantity of
goods traded. The model reconciles several qualitative patterns emphasized in empirical macro
studies and historical anecdotes, including monetary superneutrality for low inflation rates, non-
linearities in trading frequencies, and substitution of money for capital for high inflation rates.
While these effects are difficult to capture in previous monetary models, we show how they are
intimately related by all being features of an optimal trading mechanism.
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1 Introduction

What are the effects of anticipated inflation on economic activity? Insofar as inflation acts as

a tax on cash transactions, the conventional wisdom is that individuals shift consumption away

from cash-intensive activities as inflation rises. This channel is present in almost all monetary

models and is a key determinant of the welfare cost of inflation (Cooley and Hansen (1989), Lucas

(2000)). However, while most economists concede that the empirical relationship between inflation

and output is markedly different in low inflation environments than in high inflation environments,

there is far less consensus on the long run effects of inflation across monetary models.1 For instance,

in Sidrauski (1967)’s money-in-the-utility-function model, inflation has no real effects while in

Stockman (1981)’s cash-in-advance model, inflation has a negative effect on real output for all

inflation rates. Since money enters into the economy in an ad-hoc way and there is typically only

a single channel for inflation to affect real activity, those monetary models can neither capture the

social role of money nor the non-linear effects of inflation documented empirically.

In this paper, we propose a unified monetary model that captures multiple channels for inflation

to affect aggregate activity, trade, and welfare. While most of the literature focuses on the effects of

inflation on real output, we emphasize additional consequences of inflation that are critical to the

functioning of monetary economies and study how they interact with one another. These include (i)

the effort taken by individuals engaging in market activities to economize on their money holdings,

(ii) the accumulation of real assets or capital goods that may substitute for money as a means of

payment, and (iii) the trade and exchange patterns that society adopts. While studies by historians

reveal that their consequences for the functioning of monetary economies are both important and

severe (Bresciani-Turroni (1931), Bernholz (2003)), we know of no existing study that can capture

each of these aspects in a single coherent framework. Indeed there appears to be a disconnect

between macroeconomists focusing on long-run aggregates and historians emphasizing micro-level

trading behaviors, as the typical competitive markets paradigm can say little about how inflation

affects social interactions and trading patterns.

To capture the effects of inflation on individual money holdings and trade, we adopt a framework

that has an explicit role for money, without assuming money in the utility function or cash-in-

advance constraints. As in Lagos and Wright (2005), our model features alternating rounds of

centralized trades and pairwise meetings where a double-coincidence problem and frictions such as

limited commitment, no enforcement, and no record-keeping make money essential for trade. As

we show, this departure from previous studies matters significantly for capturing the qualitative

1Bullard and Keating (1995) find that a permanent increase in anticipated inflation can have a positive effect on
real output at low to moderate inflation rates that dissipates at higher levels. Rapach (2003) confirms this non-linear
effect in a sample of 14 OECD countries using a structural autoregression approach.
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relationships between inflation and economic aggregates that have appeared historically.

To emphasize the different channels for inflation to affect economic activity and trade, we

modify the Lagos and Wright (2005) model along three critical dimensions. First, the frequency of

trades is determined endogenously by buyers’ costly search efforts. In many historical episodes of

high inflation, individuals try to reduce the time of carrying money by increasing their frequency

of trade, as described by Guttmann and Meehan (1975) for the 1920s hyperinflation in Germany,2

Heynmann and Leijohnhufvud (1995) and O’Dougherty (2002) for the 1990s high inflations in Latin

America, and more recently in Zimbabwe.3 These historical narratives describe the so-called “hot

potato” effect of inflation where individuals expend valuable time and effort trying to spend their

money more quickly. We endogenize search effort as a natural way to study this hot potato effect,

a phenomenon that has been elusive to capture in previous studies.

Second, we introduce capital goods that can compete with money as a means of payment.

While money is typically the primary liquid asset in low inflation environments, societies in times

of high inflation tend to use other assets for transactions, such as capital goods. For instance,

Bresciani-Turroni (1931) documents the effects of capital overaccumulation in Weimar Germany

from 1914 to 1923 and observes that “To avoid the effects of the monetary depreciation, German

agriculturists continued to buy machines; the ‘flight from the mark to the machine,’... was the

most convenient and the easiest means of defense against the depreciation of the currency. But

towards the end of the inflation, farmers realized that a great part of their capital was sunk in

machines, whose number was far above what would ever be needed.”4 To capture this substitution

effect, we make no exogenous restrictions on payment arrangements and determine how inflation

affects the endogenous choice between money and a higher return asset. While our formalization is

stylized, capital goods in our model are meant to capture two critical features of real assets: first,

overaccumulation of such assets is inefficient, and second, such assets can serve as payment (or

collateral) to facilitate trade. Accordingly, capital goods in our model can be broadly interpreted

as any real asset with these two features.

Lastly, a key ingredient of our analysis is the use of mechanism design to determine the terms

of trade in pairwise meetings. Following Hu, Kennan, and Wallace (2009), we consider socially

2Guttmann and Meehan (1975) describe the experiences of individuals dealing with high inflation in Germany
where prices quadrupled each month from 1919 to 1923: “At eleven o’clock in the morning a siren sounded and
everybody gathered in the factory forecourt where a five-ton lorry was drawn up loaded brimful with paper money.
The chief cashier and his assistants climbed up on top. They read out names and just threw out bundles of notes.
As soon as you had caught one you made a dash for the nearest shop and bought just anything that was going.”

3Wines (2006) summarizes the distortionary effects of high inflation on consumer spending in Zimbabwe: “As
soon as [cash] is handed over, its value vanishes: ‘As soon as I get it, I have to rush out and spend as much of it as I
can... And then there is nothing left for the rest of the month.’”

4Another important substitute for money is other currencies that do not depreciate with domestic inflation (Calvo
and Vegh (1992)), but we do not pursue that as it would require a model of open economies with monetary exchanges.
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optimal allocations that are individually rational and immune to pairwise defections. As in Hu and

Rocheteau (2013), we obtain coexistence of money and higher return capital as a feature of the

optimal trading mechanism by allowing the proposed allocation to depend on both the buyer’s total

wealth and portfolio composition. In turn, this approach allows us to consider how inflation affects

the endogenous use of assets for transactions and moreover, the trading arrangements implemented

by society.5 In contrast with Hu and Rocheteau (2013) as well as other previous studies, we also

obtain new insights on the non-trivial interaction between individual search decisions and portfolio

allocation decisions.

Our results provide a comprehensive picture on the consequences of inflation for all possible

inflation rates. In particular, our model generates three qualitatively different inflation regimes,

distinguished by whether inflation is in a low, intermediate, or high range. Which regime arises

depend on endogenous thresholds for inflation, which in turn dictates how inflation affects the real

economy and how welfare-relevant variables interact with one another. As such, an important

contribution of our analysis is to characterize how rising inflation affects the interaction between

real output, search intensity, and capital accumulation. To disentangle what is achievable with

money alone, we first consider a benchmark pure currency economy without the production of

capital and then allow both money and capital to serve as means of payment.

In a pure currency economy, search intensity responds non-monotonically with inflation even

though real output per trade always falls beyond some endogenous threshold. In particular, the

low inflation regime features superneutrality: output and search efforts remain at their efficient

levels, irrespective of changes in inflation. In the intermediate inflation regime, both the buyer’s

surplus and search effort increase with inflation, even though the buyer’s holdings of real balances

falls. Hence, a rise in inflation leads to a higher frequency of trade but lower output per trade. We

also present examples where the total quantity of goods traded in the decentralized market (DM)

increases with inflation while search efforts are inefficiently high. Overall, our finding that low

inflation is costless and becomes socially harmful only with higher inflation is broadly consistent

with the non-linear relationship between inflation and output documented by Bullard and Keating

(1995).6 Without the presence of capital however, search efforts inevitably fall towards zero in

the high inflation rate regime. Indeed, as extreme rates of inflation brings monetary trade to near

collapse, buyers lose any incentive to search.

5As emphasized by Casella and Feinstein (1990), inflation not only affects how individuals economize on their
real balances, it also changes the economy’s trading patterns: “[H]istorians emphasize hyperinflation’s disruptive
impact on individuals and on their socioeconomic relationships. Previously stable trading connections were severed,
transactions patterns were altered, and normally well-functioning markets collapsed.”

6In the context of the model, aggregate output or total GDP (that includes both DM and CM outputs aggregated
with market prices) is constant for low inflation rates and then declines with higher inflation rates.
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We next introduce capital goods that can compete with money as a means of payment. Follow-

ing Lagos and Rocheteau (2008), capital goods produced in the centralized market (CM) can be

used for production in the next period’s CM.7 In the low inflation regime, monetary superneutrality

still holds: the capital stock remains at its first-best level irrespective of changes in inflation. More-

over, under a weak sufficient condition, search efforts increase with inflation in the intermediate

inflation regime while the capital stock remains at its efficient level. Hence, for low and interme-

diate inflation rates, the economy behaves very much like a pure currency economy, even though

it is feasible to use capital as a means of payments. However, in the high inflation regime, agents

overaccumulate capital, which gradually replaces money as a medium of exchange. In addition, as

inflation tends to infinity, search efforts may remain inefficiently high. These outcomes contrast

dramatically with what happens in a pure currency economy, where the economy is guaranteed

to approach autarky and search intensity collapses to zero. Our findings also suggest that capital

overaccumulation is a symptom only of high inflation rates, while Tobin effects are small or absent

for moderate inflation rates.8

This paper proceeds as follows. Section 1.1 relates our findings with the literature. Section 2

presents the baseline environment with endogenous search intensity. Section 3 describes the econ-

omy’s trading mechanism, and Section 4 characterizes implementable allocations and the effects

of inflation on output, search effort, capital accumulation, and welfare. We also consider an alter-

native formalization where buyers can choose to participate in market activities in lieu of search

intensity and analyze the effects of inflation on market participation. Finally, Section 5 closes with

concluding remarks. All proofs are in the Appendix.

1.1 Related Literature

Search-theoretic studies relating the effects of inflation on search intensity goes back to Li (1994)’s

indivisible money model. There, the “inflation tax” directly reduces the marginal utility of holding

cash thereby inducing money holders to increase their search efforts. However, this finding does

not always generalize to models with divisible money and is not robust across pricing mechanisms.

In particular, Lagos and Rocheteau (2005) modify the Lagos and Wright (2005) model to include

endogenous search intensity and find that search efforts fall with inflation under ex post bilateral

7Alternative formalizations of capital accumulation in monetary search models appear in Shi (1999), Aruoba and
Wright (2003), and Aruoba, Waller, and Wright (2011). However, those studies focus on the use of capital goods for
production by ruling out its role as a means of payment, which is a key focus of the present paper.

8Our finding that individuals first attempt to get rid of their money holdings before substituting with another
asset is also consistent with the responses of high inflation documented by Bernholz (2003): “First, the public tries
to get rid of the depreciating money when they expect further inflation... and finally, currency substitution sets in
and lowers the base, namely the real stock of the inflating money, on which the inflation tax is imposed.”
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Nash bargaining. With competitive search however, search efforts can increase with inflation, but

only for certain parameters and only for inflation rates close to the Friedman rule.

In contrast with previous studies that take as given an arbitrarily chosen pricing mechanism,

we adopt a mechanism design approach following Hu, Kennan, and Wallace (2009) and Rocheteau

(2012) where the terms of trade respond endogenously to inflation. Under an optimal trading mech-

anism, the search externality introduced by agents’ endogenous search efforts generates several new

insights relative to these previous studies. While in Hu, Kennan, and Wallace (2009), the buyer’s

DM surplus is indeterminate when inflation is sufficiently low, it is pinned down by the optimal

search effort in our model. Moreover, with search intensity fixed, the optimal mechanism always

gives buyers the full trade surplus whenever the first-best is not implementable– an implication that

no longer holds in our model. As we show, the externality generated from buyers’ search decisions

is the key driving force for search intensity to rise with inflation in our model. Under an optimal

trading mechanism, this effect arises for all parameters in the intermediate inflation rate regime,

but appears only for a small parameter set under suboptimal mechanisms.9

Although our results regarding the coexistence of money and higher-return assets are similar

to Hu and Rocheteau (2013), our main focus is on the interaction between search intensity and the

endogenous choice of media of exchange. In contrast to the pure currency economy and all previous

studies on “hot potato” effects, we find that the presence of capital creates a a range of parameters

where search intensity remains inefficiently high even as inflation gets arbitrarily high.

2 Environment

Time is discrete and has an infinite horizon. The economy is populated by a continuum of infinitely-

lived agents, divided into a set of buyers, denoted by B, and a set of sellers, denoted by S. Each

date has two stages: the first has pairwise meetings in a decentralized market (called the DM) and

the second has centralized meetings (called the CM). Time starts in the CM of period zero.

There is a single perishable good produced in each stage, with the CM good taken as the

numéraire. In the CM, all agents have the ability to produce and wish to consume. Agents’ labels

as buyers and sellers depend on their roles in the DM where only sellers are able to produce and

only buyers wish to consume.

The numéraire good can be transformed into a capital good one for one. Capital goods accu-

9Another way to generate the hot potato effect is to have periodic access to the centralized market, as in Ennis
(2009), or to introduce preference shocks, as in Ennis (2008) and Nosal (2011). Liu, Wang, and Wright (2011) focus
instead on buyers’ participation decisions and show that inflation decreases the number of buyers, thereby increasing
the frequency of trades. We obtain a similar finding under an optimal trading mechanism in our extension in Section
4.3 with endogenous entry by buyers.
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mulated at the end of period t are used by sellers at the beginning of the CM of t + 1 to produce

the numéraire good according to the technology F (k), where F is twice continuously differentiable,

strictly increasing, strictly concave, and satisfies the Inada conditions F ′(0) =∞ and F ′(∞) = 0.10

We also assume that F ′(k)k is strictly increasing, strictly concave in k, and has range R+. Capital

goods depreciate fully after one period, and the rental (or purchase) price of capital in terms of the

numéraire good at period t is denoted Rt.
11 The assumption of full depreciation is with no loss

in generality. For instance, we could have assumed a production technology f(k) and depreciation

rate δ ∈ (0, 1), and then define F (k) as F (k) = f(k) + (1− δ)k, which will give us exactly the same

analytical results.

There is also an intrinsically useless, perfectly divisible and storable asset called money. Let

Mt denote the quantity of money at the end of the period-t CM. The relative price of money in

terms of the numéraire is denoted φt. There is an exogenously given gross growth rate of the money

supply, which is constant over time and equal to γ; that is, Mt+1 = γMt. New money is injected if

γ > 1, or withdrawn if γ < 1, by lump-sum transfers or taxes, respectively. Transfers take place at

the beginning of the CM and we specify that they go to buyers only.12 Lack of record-keeping and

private information about individual trading histories rule out unsecured credit, giving a role for

money and capital to serve as means of payment. In addition, individual asset holdings are common

knowledge in a match.13 We assume that sellers do not carry real balances or capital across periods.

As shown in Hu and Rocheteau (2013), this assumption is with no loss in generality.

Agents are matched in pairs in the DM. We normalize the measure of sellers and buyers each to

one. We assume that the seller’s search intensity is exogenously given, but buyers can choose their

search intensity. At the beginning of the DM, each buyer b ∈ B chooses search intensity, eb ∈ [0, 1].

The average search intensity of buyers is e, defined as

e =

∫
b∈B

ebdb.

10Our model can be reinterpreted as one where buyers are endowed with one unit of labor in the CM and enjoy no
utility from leisure, where the CM technology is a constant-return-to-scale neoclassical production function, G(K,L).
Our analysis would be unchanged if we replace F (k) with G(k, 1). Although it would complicate the analysis and
notations, allowing for elastic labor supply in G(K,L) would not alter our main results. Moreover, our main results
go through with a linear production technology for capital, e.g. F (k) = Ak where A > 0.

11It should be noticed that who operates the technology, F , is irrelevant for our analysis provided that the residual
profits, F (k) − kF ′(k), are not pledgable in the DM due to lack of commitment.

12As our focus is to study the effects of inflation across different inflation rates, the money growth rate is not chosen
optimally and is taken as given in the mechanism design problem. To model deflation, the government is assumed to
have enough coercive power to collect taxes in the CM, but has no coercive power in the DM.

13All our results go through if buyers can hide their asset holdings. This private information problem is secondary
for the focus of this paper, and for sake of clarity we choose to ignore it.
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Figure 1: Timing of Representative Period

A buyer exerting effort e to search in the DM incurs cost ψ(e). We assume that for all e ∈ [0, 1),

ψ (e) ∈ [0,∞) is twice continuously differentiable, strictly increasing, strictly convex, and satisfies

the Inada conditions ψ(0) = ψ′(0) = 0, lime→1 ψ(e) = ∞, and lime→1 ψ
′(e) = ∞. Figure 1

summarizes the timing of a representative period.

Given ē, the number of matches in the DM is determined by a constant-returns-to-scale match-

ing function that depends on market tightness, defined as θ ≡ 1/ē ∈ [1,∞], or the ratio of sellers to

the effective buyers searching. A high θ implies a thick market for buyers and a thin one for sellers.

Given θ, the meeting probability for an individual buyer with search intensity e is eα(θ) while the

meeting probability of a seller is α(θ)/θ. The function α(θ) satisfies α(θ) ∈ [0, 1] for any θ ≥ 1 and

is twice continuously differentiable, strictly increasing, strictly concave for θ ∈ [1,∞), and satisfies

the Inada conditions limθ→∞ α(θ) = 1, limθ→1 α(θ) = 0, limθ→1 α
′(θ) ≥ 1, and limθ→1 α(θ)/θ = 1.

The instantaneous utility function of a buyer is

U b(q, e, x) = u(q)− ψ(e) + x, (1)

where q is consumption in the DM, x is the utility of consuming x ∈ R units of numéraire (x < 0 is

interpreted as production), and e is the buyer’s search effort.14 We assume that u(0) = 0, u′(0) =∞,

14For tractability, the model requires that either the utility of consuming or the cost of producing the CM good is
linear. In the formalization here, we simply assume that both CM consumption and production is linear though it
would be straightforward to generalize to quasi-linear preferences U(c)− y, where c is CM consumption and y is CM
production. Agents would then consume c∗ in the CM where c∗ satisfies U ′(c∗) = 1. Normalizing U(c∗) − c∗ to zero
would yield a model equivalent to the one presented here.

8



u′(q) > 0, and u′′(q) < 0 for q > 0. A buyer’s lifetime expected utility is E0

{∑∞
t=0 β

tU b(xt, qt, et)
}

,

where E0 is the expectation operator conditional on time-0 information. The discount factor β =

(1 + r)−1 ∈ (0, 1) is the same for all agents. We assume that the gross growth rate of money, γ, is

greater than β throughout the paper. Similarly, the instantaneous utility function of a seller is

U s(q, x) = −c(q) + x, (2)

where q is production in the DM and x is defined as before. We assume c(0) = c′(0) = 0, c′(q) > 0,

and c′′(q) ≥ 0. Further, we let c(q) = u(q) for some q > 0 and denote by q∗ the solution to

u′(q∗) = c′(q∗). Lifetime utility for a seller is given by E0

{∑∞
t=0 β

tU s(xt, qt)
}

.

3 Implementation

We study equilibrium outcomes that can be implemented with a mechanism designer’s proposal. A

proposal consists of four objects: (i) a sequence of functions in the bilateral matches, ot : R2
+ → R3

+,

each of which maps the buyer’s portfolio, (zt, kt), into a proposed trade, (qt, dz,t, dk,t) ∈ R+×[0, zt]×
[0, kt], where qt is the DM output produced by the seller and consumed by the buyer, dz,t is the

transfer of real balances, and dk,t is the transfer of capital from the buyer to the seller; (ii) an

initial distribution of money, µ; (iii) a sequence of prices for money, {φt}∞t=1, and a sequence of

rental prices for capital, {Rt}∞t=1, both in terms of the numéraire good; (iv) a sequence of search

intensities of buyers, {et}∞t=1.

The trading procedure in the DM is given by the following game. Given the buyer’s portfolio

holding and the associated proposed trade, both the buyer and the seller simultaneously respond

with yes or no: if both respond with yes, then the proposed trade is carried out; otherwise, there

is no trade. Since both agents can turn down the proposed trade, this ensures that trades are

individually rational. We also require any proposed trade to be in the pairwise core.15 Hence, we

only consider trading mechanisms in pairwise meetings that are individually rational and coalition-

proof. Agents in the CM trade competitively against the proposed prices, which is consistent with

the pairwise core requirement in the DM due to the equivalence between the core for the centralized

meeting and competitive equilibria.

We denote sb as the strategy of buyer b ∈ B, whose component at date t consists of three parts

for any of his private trading history ht at the beginning of period t: (i) sh
t,0
b (z, k) = e ∈ R+ that

15The pairwise core requirement can be implemented directly with a trading mechanism that adds a renegotiation
stage as in Hu, Kennan, and Wallace (2009), following the yes responses from both agents. The renegotiation stage
will work as follows. An agent will be chosen at random to make an alternative offer to the one made by the
mechanism. The other agent will then have the opportunity to choose between the two offers.
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maps the buyer’s portfolio, (z, k), into his search intensity, e, at the beginning of the DM; (ii)

sh
t,1
b (z, k) ∈ {yes, no} that, contingent on being matched in the DM, maps the buyer’s portfolio

(z, k) to his yes or no response in the DM; (iii) sh
t,2
b (z, k, ab, as) ∈ R2

+ that maps the buyer’s original

portfolio, (z, k), and the buyer’s and seller’s choices whether to accept the trade, ab, as ∈ {yes, no},
to his final real balances and capital holdings after the CM. The strategy of a seller s ∈ S at the

beginning of period t, given his private history ht, consists of a function, sh
t,1
s (z, k) ∈ {yes, no},

that represent the seller’s response to trade contingent on the buyer’s portfolio.

Definition 1. An equilibrium is a list, 〈(sb : b ∈ B), (ss : s ∈ S), µ, {ot, φt, Rt, et}∞t=1〉, composed of

one strategy for each agent and the proposal (µ, {ot, φt, Rt, et}∞t=1) such that: ( i) each strategy is

sequentially rational given other players’ strategies; and ( ii) the centralized market clears at every

date.

In what follows, we focus on stationary proposals where real balances are constant over time

and equilibria such that (i) agents follow symmetric and stationary strategies; (ii) agents always

respond with yes in all DM meetings; and (iii) the initial distribution of money is uniform across

buyers. Following Hu, Kennan, and Wallace (2009), we call such equilibria simple equilibria. In a

simple equilibrium, φt = γφt+1 for all t; hence, we can discuss real balances only and leave out φt

from a proposal. Moreover, the proposed DM trades, ot(zt, kt), are the same across time periods

and can be written as o(z, k) = [q(z, k), dz(z, k), dk(z, k)].

The outcome of a simple equilibrium is summarized by a list, (qp, dpz, d
p
k, z

p, kp, ep), where

(qp, dpz, d
p
k) are the terms of trade in the DM, ep is the buyer’s search intensity, and (zp, kp) are

the portfolio holdings of those buyers. Such an outcome, (qp, dpz, d
p
k, z

p, kp, ep), is said to be im-

plementable if it is the equilibrium outcome of a simple equilibrium associated with a proposal

{o,R, e}. Given the proposals and a rental price for capital, R, we let CO(z, k;R) denote the set

of allocations in the pairwise core for each (z, k).

For a given proposal, o, market thickness, θ, and rental price, R, let V b(z, k) and W b(z, k)

denote the continuation values for a buyer holding portfolio (z, k) upon entering the DM and CM,

respectively. Similarly, let W s(z, k) denote the continuation value for a seller holding (z, k) upon

entering the CM. The problem for a buyer in the CM solves

W b(z, k) = max
x,ẑ≥0,k̂≥0

{
x+ βV b(ẑ, k̂)

}
s.t. x+ γẑ + k̂ = z +Rk + T

where ẑ and k̂ denote the real balances and capital taken into the next DM, and T = (Mt+1−Mt)φt

is the lump-sum transfer of money from the government. Since we focus on stationary equilibrium
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where real balances are constant over time, γ = φt
φt+1

= Mt+1

Mt
. Hence in order to hold ẑ real balances

in the next period, the buyer must accumulate γẑ units of real balances this period. Substituting

x = z +Rk + T − γẑ − k̂ from the budget constraint, a buyer’s Bellman equation in the CM is

W b(z, k) = z +Rk + T + max
ẑ≥0,k̂≥0

{
−γẑ − k̂ + βV b(ẑ, k̂)

}
, (3)

Due to linear preferences in the CM, note that (i) the buyer’s value function is linear in total

wealth, W b(z, k) = z +Rk+W b(0, 0), and (ii) the maximizing choice of ẑ and k̂ is independent of

the buyer’s current wealth, (z, k).

The value function of a buyer with portfolio (z, k) upon entering the DM, V b(z, k), is given by

V b(z, k) = max
e∈[0,1]

{
−ψ(e) + eα(θ)

{
u [q(z, k)] +W b [z − dz(z, k), k − dk(z, k)]

}
+ [1− eα(θ)]W b(z, k)

}
.

(4)

According to (4), a buyer searching with intensity e meets a seller with probability eα(θ), consumes

q(z, k), and transfers to the seller dz(z, k) real balances and dk(z, k) units of capital. The buyer

therefore enters the CM with z − dz(z, k) real balances and k − dk(z, k) units of capital. With

probability 1− eα(θ), a buyer is unmatched, in which case there is no trade in the DM. Using the

linearity of W b(z, k), (4) simplifies to

V b(z, k) = max
e∈[0,1]

{
−ψ(e) + eα(θ) {u [q(z, k)]− dz (z, k)−Rdk (z, k)}+W b(z, k)

}
. (5)

For each portfolio (z, k), we use e(z, k) to denote the optimal search intensity that solves the

maximization problem (5). Because ψ is strictly convex, e(z, k) is uniquely defined. Moreover,

when (z, k) = (0, 0), e(z, k) = 0. Noting that as θ = 1/ep in equilibrium, the buyer’s choice of

search intensity, ep = e(zp, kp), solves

− ψ′(ep) + α(1/ep)
[
u(qp)− dpz −Rd

p
k

]
= 0. (6)

Substituting V b(z, k) with its expression given by (5) into (3), using the linearity of W b(z, k), and

omitting constant terms, the buyer’s portfolio problem in the CM can be reformulated as

max
(z,k)
{−iz − (1 + r −R)k − ψ(e(z, k)) + e(z, k)α(θ) {u [q(z, k)]− dz (z, k)−Rdk(z, k)}} , (7)

where i = γ−β
β is the cost of holding money and 1 + r − R is the cost of holding capital, which is

the difference between the gross rate of time preference and the rental price of capital. Since in
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equilibrium, holding the equilibrium portfolio, (zp, kp), is better than (0, 0), we must have

− izp − (1 + r −R)kp − ψ(ep) + epα(1/ep)[u(qp)− dpz −Rd
p
k] ≥ 0. (8)

In a similar vein, the Bellman equation for a seller in the CM is

W s(z, k) = z +Rk + max
k̂≥0

{
F (k̂)−Rk̂

}
. (9)

According to (9), the seller’s choice of input to operate the production technology is such that

F ′(k̂) = R. Due to market clearing in the CM, the aggregate demand for capital must equal the

aggregate supply: kp = k̂. Consequently, the equilibrium capital stock, kp, satisfies

F ′(kp) = R ≤ 1 + r. (10)

According to (10), the equilibrium capital stock equates the marginal product of capital, F ′(kp),

with the rental rate, R. It is also necessary that R ≤ 1+r. If R > 1+r, buyers will hold an infinite

amount of capital, but perfect competition implies that F ′(∞) = 0 < 1 + r < R, a contradiction.

Using (9), the seller is willing to respond with yes to the proposed trade (qp, dpz, d
p
k) only if

− c(qp) + dpz +Rdpk ≥ 0. (11)

The above discussion implies that (6), (8), (10), and (11) are necessary conditions to implement

an outcome, (qp, dpz, d
p
k, z

p, kp, ep). In addition, we also impose the pairwise core requirement. For a

given rental price, R, and buyer’s portfolio, (zp, kp), the pairwise core, denoted by CO(zp, kp;R), is

defined as the set of all feasible allocations, (q, dz, dk) ∈ R+× [0, zp]× [0, kp], such that there are no

alternative feasible allocations that would make both parties in the match strictly better off, taking

the continuation value as given. Requiring proposed trades to be in the pairwise core ensures that

those trades are coalition proof. A characterization of the pairwise core in a related setting can be

found in Hu and Rocheteau (2013)’s Supplementary Appendix B. The following proposition shows

that those conditions, together with the pairwise core requirement, are also sufficient.
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Proposition 1. An outcome, (qp, dpz, d
p
k, z

p, kp, ep), is implementable if and only if

−izp − [1 + r − F ′(kp)]kp + epα(1/ep)[u(qp)− dpz − F ′(kp)d
p
k]− ψ(ep) ≥ 0, (12)

dpz ≤ zp, d
p
k ≤ k

p, (13)

ψ′(ep) = α(1/ep)[u(qp)− dpz − F ′(kp)d
p
k], (14)

−c(qp) + dpz + F ′(kp)dpk ≥ 0, (15)

F ′(kp) ≤ 1 + r, (16)

and (qp, dpz, d
p
k) ∈ CO(zp, kp;R).

The proof of Proposition 1 is constructive as we explicitly provide the proposed trades to

implement the candidate outcome.16 Proposition 1 extends the implementability result in Hu and

Rocheteau (2013). In contrast to their analysis, here we have to worry about the implementation

of search efforts, which are determined by the trade surplus that goes to the buyer through (14).

As a consequence, the trade surplus to the buyer affects both the portfolio choice and the search

effort choice for the buyer. This brings about a new trade-off that is not present in the analysis in

Hu and Rocheteau (2013), which we discuss further in the next section.

4 Optimal Allocation

In this section, we study implementable outcomes that are socially optimal. Formally, given an

outcome, (qp, dpz, d
p
k, z

p, kp, ep), social welfare is defined as the discounted sum of buyers’ and sellers’

expected utilities:

W(qp, dpz, d
p
k, z

p, kp, ep) = −kp + lim
T→∞

T∑
t=1

βt
{
epα

(
1

ep

)
[u(qp)− c(qp)]− ψ(ep) + [F (kp)− kp]

}
=

1

r

{
epα

(
1

ep

)
[u(qp)− c(qp)]− ψ(ep) + [F (kp)− (1 + r)kp]

}
. (17)

The first term after the first equality is the utility cost incurred by agents in the initial CM to

accumulate the proposed capital stock, kp; the second term captures the utility flows in subsequent

periods and consists of the sum of expected surpluses in pairwise meetings, epα(1/ep)[u(qp)−c(qp)],
the cost of searching, ψ(ep), and the output from the production technology net of the depreciated

capital stock, F (kp)− kp.
16The constructed mechanism in the proof of Proposition 1 features a discontinuity in buyers’ asset holdings.

However, as shown in the Supplemental Material, Section 1, we can make the mechanism continuous.
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Definition 2. An outcome, (qp, dpz, d
p
k, z

p, kp, ep), is constrained efficient if it maximizes (17) subject

to (12)–(16) and the pairwise core requirement.

We begin with the benchmark case that maximizes social welfare (17) but without imple-

mentability constraints (12)–(16). The solution to this unconstrained problem, which we also call

the first-best allocation, is given by qp = q∗, kp = k∗, and ep = e∗ that solve

u′(q∗) = c′(q∗), (18)

F ′(k∗) = 1 + r, (19)[
α(1/e∗)− α′(1/e∗)/e∗

]
[u(q∗)− c(q∗)] = ψ′(e∗). (20)

Because (q∗, k∗, e∗) are uniquely determined by the first-order conditions for optimality and because

the welfare given by (17) is concave in q and in e (but it is not concave jointly in (q, e)), these

necessary conditions are also sufficient. The first-best level of output, q∗, maximizes the match

surplus between a buyer and seller, and the first-best level of capital, k∗, ensures that the marginal

product of capital compensates for the opportunity cost of holding capital. The first-best level of

search intensity, e∗, is derived from the first-order condition on the objective function with respect

to e, but taking qp = q∗. Accordingly, the marginal cost of searching, ψ′(e∗), is equal to the

corresponding social marginal contribution of searching, [α(1/e∗)− α′(1/e∗)/e∗], times the surplus

generated in each trade, u(q∗)− c(q∗).

4.1 Endogenous Search Intensity with Money Alone

Here we consider the economy without the production of capital, that is, we consider constrained-

efficient outcomes with the additional constraint kp = 0 (and ignore (16)). Note that this constraint

is equivalent to disallowing capital production in our economy. The following lemma helps to

characterize a constrained-efficient outcome without capital, (qp, dpz, zp, ep).

Lemma 1. Consider an economy with the constraint kp = 0. There exists zp such that (qp, dpz, zp, ep)

is a constrained-efficient outcome if and only if the triple (qp, dpz, ep) solves

max
(q,dz ,e)

eα(1/e)[u(q)− c(q)]− ψ(e) (21)
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subject to

−idz + eα(1/e)[u(q)− dz]− ψ(e) ≥ 0, (22)

ψ′(e) = α(1/e)[u(q)− dz], (23)

−c(q) + dz ≥ 0. (24)

Moreover, a solution to (21)– (24) exists, and any solution, (qp, dpz, ep), satisfies qp ≤ q∗, dpz ≤ u(q∗),

and ep ≤ ê, where ê solves

ψ′(ê)/α(1/ê) = [u(q∗)− c(q∗)]. (25)

Because of Lemma 1, we also call the triple (qp, dpz, ep) a constrained-efficient outcome if it

solves (21)–(24). The constraint (22) differs from (12) in that it replaces zp by dpz, and hence

implicitly assumes zp = dpz. As we show in the proof of Lemma 1, this assumption is satisfied when

the first-best is not implementable, and, even when the first-best is implementable, there always

exists a constrained-efficient outcome that satisfies this restriction. Moreover, note that there is no

pairwise-core requirement in problem (21)–(24). It turns out that when maximizing social welfare,

the pairwise-core requirement is not a binding constraint. Accordingly, the set of implementable

allocations with respect to Lemma 1 is described by

Am(i) =

{
(q, e) ∈ R+ × [0, 1] : c(q) ≤ u(q)− ψ′(e)

α(1/e)
≤ eψ′(e)− ψ(e)

i

}
. (26)

Note that dz is pinned down by (23) and hence is not described in Am(i). We are now ready to

describe constrained-efficient outcomes for the economy with money alone.

Proposition 2. Consider an economy with the constraint kp = 0. For any i ≥ 0, a constrained-

efficient outcome, (qp(i), dpz(i), ep(i)), exists, and satisfies the following.

1. Let

i∗ ≡ e∗ψ′(e∗)− ψ(e∗)

u(q∗)− ψ′(e∗)/α(1/e∗)
> 0.

Then, for all i ∈ [0, i∗], the unique constrained-efficient outcome is given by (qp(i), dpz(i), ep(i)) =

(q∗, d∗z, e
∗), where d∗z = u(q∗)− ψ′(e∗)/α(1/e∗).

2. There exists ī > i∗ such that for all i ∈ (i∗, ī], the unique constrained-efficient outcome,

(qp(i), dpz(i), ep(i)), satisfies qp(i) < q∗, dpz(i) < d∗z, and d
die

p(i) > 0.

3. For any e ∈ (0, 1], there exists ie > i∗ such that if i > ie, then any constrained-efficient
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outcome, (qp(i), dpz(i), ep(i)), satisfies qp(i) < q∗, dpz(i) < d∗z, and ep(i) < e.

4. Suppose that ψ′′(0) ∈ (0,∞) and that for some δ > 0, limq→0(c−1◦u)′(q)q0.5+δ > 0. Then, for

any i, any constrained-efficient allocation under i has dpz(i) > 0, and has a positive welfare.

While the proof of Proposition 2 (1) only requires verifying constraints (22)–(24), the proof of

Proposition 2 (2) is non-standard since the constraint set is not convex and the objective function

is not globally concave. Instead, we employ the Implicit Function Theorem to find a solution to the

first-order conditions and use continuity to establish that the solution is also a global maximizer.

While we cannot give an explicit expression for the upper bound on the inflation rate below which

search intensity increases, we later provide numerical examples to quantify this threshold.

Proposition 2 summarizes the effects of inflation in a pure currency economy in terms of three

inflationary regimes. According to Proposition 2 (1), the highest nominal interest rate for imple-

menting the first best is strictly positive: i∗ > 0. Hence, the Friedman rule, defined as i = 0, is

sufficient but not necessary to achieve maximal welfare.17 For all i ∈ [0, i∗], money is superneutral

and all welfare-relevant variables are at their first-best levels. While this superneutrality result also

appears in Hu, Kennan, and Wallace (2009), a notable difference here is that the first best cannot

be implemented by giving all the surplus to buyers with the equilibrium amount of real balances.18

If this were the case, then under the first-best level of output, search intensity would be given by

(23) with q = q∗ and dz = c(q∗), and hence equal to ê given by (25). But due to search externalities,

ê > e∗: by (20),

ψ′(e∗)/α(1/e∗) < ψ′(e∗)/[α(1/e∗)− α′(1/e∗)/e∗] = [u(q∗)− c(q∗)] = ψ′(ê)/α(1/ê).

To discourage buyers from over-searching, the optimal mechanism gives buyers a fraction of the

surplus while the seller’s participation constraint, (24), is not binding at the optimum.

Second, for a range of moderate to high inflation rates, the first-best allocation is no longer

incentive feasible: both DM output and search intensity deviate from their first-best levels when

i ∈ (i∗, ī]. For nominal interest rates in this range, inflation increases the buyer’s search effort

and hence the frequency of trades. While this result resembles the so-called “hot potato” effect

of inflation, the underlying mechanism in our model differs from the conventional rationale. The

standard explanation is that higher inflation itself induces buyers to search harder in order to get

17This finding differs from the typical result in monetary models that rely on exogenously given trading mechanisms
such as pairwise bargaining. There, the Friedman rule is typically necessary for efficiency, at least with regards to the
amount of output traded in a match. With endogenous participation or entry however, the Friedman rule need not
be optimal. See also Rocheteau and Wright (2005) and Berentsen, Rocheteau, and Shi (2007) for a related discussion.

18As in Hu, Kennan, and Wallace (2009), the optimal mechanism punishes buyers with lower than equilibrium
amount of real balances by giving them lower surpluses.
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rid of their money holdings faster. However, this reasoning implicitly assumes a cash-in-advance

constraint without which buyers may not hold cash in the first place. Instead, in our setting, the

optimal mechanism dictates buyers to have more surplus in equilibrium as inflation rises above i∗,

thereby inducing buyers to search harder.

The intuition for why the optimal mechanism prescribes both the buyer’s surplus and search

effort to increase with inflation can be seen from Figures 2 and 3, which depict the implementable

set, Am(i), at i = i∗ and how it changes with an increase in i. In Figure 2, the first-best allocation,

(q∗, e∗), lies on the boundary of the lower curve, which corresponds to the buyer’s participation

constraint, (22), being binding, but lies strictly below the upper curve, which corresponds to the

seller’s participation constraint, (24), being slack. Figure 3 shows that as the nominal interest rate

increases from i∗ to i′ > i∗, the buyer’s constraint shifts upward while the seller’s constraint is not

affected. As the objective function, (21), is locally concave, the constrained-efficient level of search

intensity increases with inflation. Moreover, because any output higher than q∗ would violate the

pairwise-core requirement, Lemma 1 implies that output per trade falls as inflation increases.

Figure 2: Implementable Set, Am(i∗)
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Figure 3: Implementable Set Shrinks As i ↑
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The above argument concerning the rise in search intensity is valid for nominal interest rates

near i∗. Indeed, Proposition 2 (3) shows that search intensity can be arbitrarily small when the

inflation rate is sufficiently high. This can also be seen from Figure 3: as inflation increases,

the buyer’s constraint shifts leftward and, for high inflation rates, the implementable quantity

of output per match must fall to an arbitrarily small amount. Consequently, the economy will

eventually collapse into autarky as inflation rises.
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Here we provide numerical examples that illustrate Proposition 2 and quantify the threshold

for search effort to increase with inflation. We consider a family of fairly standard functional forms:

u(q) = (q+b)1−σ−b1−σ
1−σ , c(q) = qκ

κ , ψ(e) = c
(

e
1−e

)ρ
, and α(θ) = 1 − exp(1 − θ) where θ = 1/e. We

set b = 0.0001, c = 0.4, ρ = 2, r = 0.02, σ = 0.7, and report results for different values of κ.19

Figure 4: Output per Match Figure 5: Search Intensity

Figure 6: Aggregate Output Figure 7: Matching Probability

Figure 8: Real Balances Figure 9: Buyer’s Surplus

In what follows, we define DM aggregate output as the total quantity of goods traded, or total

19While we do not present calibrated examples, we do investigate the sensitivity of our results to changes in
parameters. Changing c or r does not affect much the main qualitative results, though obviously does affect e.g.
the magnitude for the threshold nominal interest rate, i∗. The examples are most sensitive to different values for σ,
which controls the concavity DM utility function, and κ, which controls the convexity of the DM cost function.
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production in the decentralized market:

Q ≡ eα(1/e)︸ ︷︷ ︸
matching prob.

× q︸︷︷︸
output per trade

. (27)

Figures 4–9 assume κ = 1 and plot output per match, search effort, DM aggregate output, the

buyer’s matching probability, real balances, and the buyer’s surplus for a range of nominal interest

rates. In these examples, the threshold nominal interest rate below which the first-best is imple-

mentable is given by i∗ = 0.09. Assuming each period corresponds to a year, this corresponds to

a threshold inflation rate of γ∗ − 1 = (1 + r)−1(1 + i∗) − 1 = 0.07, or 7% annual inflation, below

which money is superneutral.

Figures 5 and 9 show that the buyer’s search effort and buyer’s surplus move in the same

direction for i > i∗, both reaching their maximum at i = ī, as suggested by Proposition 2 (2) and

(3). Note also that ī can be fairly high, corresponding to ī = 0.65 in the examples above, or 63%

annual inflation. However, Proposition 2 (3) implies that search efforts eventually fall towards zero

as inflation tends to infinity.

We also find examples where DM aggregate output increases with a range of moderate inflation

rates. This can be seen in Figure 10 which plots the total quantity traded in the DM, Q = eα(1/e)q,

assuming κ = 5. When i ∈ (i∗, ī], our model has two opposing effects: search intensity and hence

the frequency of trades, eα(1/e), increases with inflation while DM quantity traded per match, q,

falls with inflation. In our examples, we find that the responsiveness of DM output to inflation

is decreasing in the parameter κ, so that output is less responsive to inflation when c(q) is more

convex. Hence when κ is relatively large, it is possible for the total quantity traded, eα(1/e)q, to

go up with inflation. Nevertheless, total GDP in our economy, defined as the sum of both DM and

CM outputs aggregated using the implicit price in the DM, is proportional to real balances and

hence decreases with inflation whenever the first-best is not implementable.

Figure 10: Aggregate Output Figure 11: Matching Probability

Our non-monotonicity results on search efforts and quantity traded contrast sharply with many
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previous studies that study endogenous search decisions under suboptimal trading mechanisms. In

particular, Lagos and Rocheteau (2005) show that under Nash bargaining, the buyer’s search effort

falls monotonically with inflation. As this trading protocol is held constant for different inflation

rates, both the buyer’s real balances and surplus fall with inflation, and hence search efforts fall

as well.20 Moreover, there is another key difference from most of the literature on search intensity

once we introduce capital goods. In most previous studies, as in our pure currency economy, any

rise in search intensity would eventually revert as inflation rises. This result seems at odds with

observations describing “hot potato” behavior in economies with high inflation. In the next section,

we introduce capital production, and it turns out that under an optimal mechanism, this eventual

collapse is overturned and coexistence of money and higher-return capital is obtained.

4.2 Endogenous Search Intensity with Money and Capital

Here we study constrained-efficient outcomes when both money and capital are present in the

economy. Since the capital good may also be used as a medium of exchange, we will show that

the economy may never collapse into autarky even for very high inflation rates. Less obvious is the

extent to which search intensity changes with inflation in the presence of capital, and we obtain

a sufficient condition under which the buyer’s search intensity increases with moderate inflation

while the capital stock remains at its first-best level. However, in contrast to the model with money

alone, there is no general guarantee that search intensity is bound to decrease as inflation tends to

infinity in the presence of capital.

Before considering the economy with both money and capital, it is useful to first consider the

economy with capital as the only liquid asset. This allows us to determine what is achievable with

capital alone. Imposing the additional constraint z = 0, an outcome may be denoted by (q, dk, k, e).

Lemma 2. Consider an economy with the constraint z = 0. A constrained-efficient outcome,

(qc, dck, k
c, ec), exists. Moreover, the first-best is implementable if and only if

(1 + r)k∗ ≥ u(q∗)− ψ′(e∗)

α(1/e∗)
.

When the first-best is not implementable, dck = kc > k∗. Moreover, the maximal social welfare given

by

Wc =
1

r
{ecα(1/ec)[u(qc)− c(qc)]− ψ(ec) + F (kc)− (1 + r)kc}

20However, they find that search intensity can rise with inflation under competitive search, but only for certain
parameterizations and only for inflations rates close to the Friedman rule. In contrast, we find that search intensity
rises with inflation holds more generally for a range of positive inflation rates and is a feature of the optimal mechanism
for pairwise meetings.
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is strictly greater than what is achievable with the additional constraint that k = k∗, denoted W0.

Lemma 2 implies that the first-best allocation is implementable without money when the first-

best capital stock, k∗, is sufficiently large. In that case, the aggregate capital stock is sufficiently

abundant to allow buyers to finance consumption of the first-best. Since the first-best is imple-

mentable with z = 0, money is not essential.

When instead k∗ is insufficient to meet the economy’s liquidity needs, the optimal mechanism

features an overaccumulation of capital (kc > k∗) in the absence of money. In addition, quantities

traded in the DM are inefficiently low (qc < q∗). With a shortage of liquidity, society faces a

trade-off between two inefficiencies, as highlighted by Hu and Rocheteau (2013): (i) the shortage

of capital for liquidity purposes, and (ii) the overaccumulation of capital for productive purposes.

Lemma 2 then shows that, whenever the first best is not implementable, overaccumulation of capital

is socially optimal in order to mitigate the shortage of liquidity (without the presence of money).

Note that since it is always feasible to set z = 0, Wc gives a lower bound on welfare when both

money and capital are present.

For comparison later on, we provide some numerical examples given in Table 1 for the economy

with capital alone. These examples assume the functional forms given in the previous subsection

plus F (k) = Aka + (1− δ)k. We set b = 0.0001, c = 0.4, ρ = 2, κ = 1, r = 0.02, a = 0.3, A = 0.8,

δ = 0.8, and consider two values of σ, 0.3 and 0.7. In both cases, the first-best is not implementable

and there is overaccumulation of capital. However, when σ = 0.3, equilibrium search intensity is

lower than the first-best level; for σ = 0.7, search intensity is higher than the first-best.

Table 1: Constrained-Efficient Outcomes with Capital Alone
First-Best σ = 0.3 First-Best σ = 0.7

Output q∗ = 1 q = 0.29 q∗ = 1 q = 0.32
Search Effort e∗ = 0.22 e = 0.18 e∗ = 0.34 e = 0.41
Capital k∗ = 0.17 k = 0.32 k∗ = 0.17 k = 0.37

We now turn to the case where both money and capital can serve as media of exchange. The

next proposition summarizes the effects of inflation on implementable allocations when there is a

shortage of capital. To simplify notation, we call a tuple (qp(i), zp(i), kp(i), ep(i)) a constrained-

efficient outcome under a nominal interest rate i if there exists (dpz, d
p
k) ≤ (zp(i), kp(i)) such that

(qp(i), dpz, d
p
k, z

p(i), kp(i), ep(i)) maximizes social welfare, (17), subject to the implementability con-

straints, (12)–(16). As in the previous section, the pairwise core requirement is not binding for the

constrained-efficient outcome.

Proposition 3. Suppose (1 + r)k∗ < u(q∗)−ψ′(e∗)/α(1/e∗). For any i ≥ 0, a constrained efficient
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outcome, (qp(i), zp(i), kp(i), ep(i)), exists, and satisfies the following.

1. Let

i∗∗ =
e∗ψ′(e∗)− ψ(e∗)

u(q∗)− (1 + r)k∗ − ψ′(e∗)/α(1/e∗)
> i∗.

For all i ∈ [0, i∗∗], the constrained-efficient outcome, (qp(i), zp(i), kp(i), ep(i)), is unique (ex-

cept for zp(i)) , and satisfies qp(i) = q∗, zp(i) > 0, kp(i) = k∗, and ep(i) = e∗.

2. Suppose 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗∗ . There exists ī′ > i∗∗ such that for all i ∈ (i∗∗, ī′], the

unique constrained-efficient outcome, (qp(i), zp(i), kp(i), ep(i)), satisfies qp(i) < q∗, kp = k∗,

zp(i) > 0, and ep(i) > e∗. Moreover, ep(i) is strictly increasing in i ∈ [i∗∗, ī′].

3. There exists î such that, for each i > î, and for each constrained-efficient outcome, we have

kp(i) > k∗. Moreover, zp(i)→ 0 as i→∞ but maximum welfare converges to Wc >W0.

Proposition 3 assumes (1 + r)k∗ < u(q∗) − ψ′(e∗)/α(1/e∗) to allow a role for money. Proposi-

tion 3 (1) shows that, similar to the pure monetary economy studied previously, the first-best is

implementable for all i ∈ [0, i∗∗]. In this range, money is superneutral, in which case changes in

inflation has no real effects on output or the capital stock.

For a range of intermediate inflation rates, Proposition 3 (2) gives a sufficient condition under

which inflation has no effects on the capital stock even though output is inefficiently low and search

intensity is inefficiently high. For instance, when F (k) = Aka, the sufficient condition holds if a is

not too large or i∗∗ is relatively small. We remark here that money is essential for a range of nominal

interest rates above i∗∗, even without imposing the sufficient condition, 1+r+F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗∗

(see Claim 2 in the proof of Proposition 3 (2)). As in Hu and Rocheteau (2013), we obtain rate-

of-return dominance whenever both money and capital are used as media of exchange. For this

range of inflation rates, the economy responds to inflation in a way very similar to a pure currency

economy. In particular, the capital stock remains at its first-best level but its production does not

affect liquidity provision in the economy as inflation changes, while search intensity responds in a

similar vein to that in Proposition 2 (2).

In the high inflation rate regime, the economy with capital features new implications. Propo-

sition 3 (3) shows that capital overaccumulation is bound to occur as inflation rises, even without

the sufficient condition in part (2). In turn, the monetary sector eventually collapses. In contrast

to the pure currency economy, however, the economy never collapses into autarky as capital can

always be used as a medium of exchange, and search intensity can remain inefficiently high even

at high inflation rates. Indeed, as welfare converges to the level where only capital is the medium
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of exchange, Wc, Proposition 3 (3) suggests that search intensity also converges to its level with-

out money, which may be higher or lower than e∗, and we provide numerical examples below to

illustrate this possibility.

Figure 12: Output per Match Figure 13: Search Intensity
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Figure 14: Aggregate Output Figure 15: Matching Probability

Figure 16: Real Balances Figure 17: Capital

Figures 12–17 are numerical examples illustrating our findings in Proposition 3. We assume

the same functional forms as before with b = 0.0001, c = 0.4, ρ = 2, κ = 1, r = 0.02, a = 0.3,

A = 0.8, δ = 0.8, and σ = 0.7. Figure 13 plots the buyer’s search intensity and shows that search

intensity remains above its first-best level and approaches the value reported in Table 1 for the

economy with capital alone. As can be seen from Figure 13, the rise in search intensity can persist

even for high inflation rates. These results are consistent with many recorded historical episodes

of the “hot potato” effect of inflation as described in Bresciani-Turroni (1931), Heynmann and
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Leijohnhufvud (1995), and O’Dougherty (2002). For high inflation rates, the constrained-efficient

allocation features a substitution effect of inflation where the optimal mechanism prescribes buyers

to substitute money for capital as inflation increases, as can be seen in Figures 16 and 17. This

Tobin effect turns out to be an optimal way of responding to inflation as doing so allows agents to

maintain consumption in the DM even as inflation gets very high, as can be seen in Figure 12.

Finally, our previous finding that DM aggregate output can rise with inflation also carries

over to the model with both money and capital. Figure 18 plots aggregate output in the DM,

Q ≡ eα(1/e), assuming κ = 5. As before, when output per trade is relatively unresponsive to

inflation, it is possible for moderate inflation to induce an overall increase in the total number of

DM trades.

Figure 18: Aggregate Output Figure 19: Matching Probability

4.3 Endogenous Participation

Here we consider an endogenous entry decision and study the effects of inflation on buyers’ partic-

ipation decisions, similar to Liu, Wang, and Wright (2011).21 We modify our baseline environment

as follows. Instead of choosing search intensity, buyers can choose whether or not to enter the DM

each date before the DM opens. If a buyer decides to enter, he incurs a fixed cost v > 0 for doing

so. We assume that this entry decision is made together with the portfolio decision in the previous

period’s CM. In any case, the buyer must take into account their entry decision when making their

portfolio decision. Sellers enter for free, and we assume that a unit measure of sellers always enter

each period. The timing of a representative period is summarized in Figure 20.

Given the measure of buyers entering the DM, denoted n, market thickness is given by θ = 1/n,

and the buyer’s matching probability is given by α(θ), where the function α satisfies the assumptions

given in Section 2. Under the Inada conditions on α, we may assume that n ∈ [0, 1]. We also modify

the production technology using the capital good and assume that F (k) = Ak with A < 1+r. This

21Rocheteau (2012) considers a similar endogenous participation decision where agents can choose to be buyers or
sellers in the DM. That formalization leads to similar results to the ones presented here.
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Figure 20: Timing of Representative Period (Endogenous Participation)

modification greatly simplifies the analysis and avoids issues such as whether or not buyers who do

not enter the DM hold capital because the efficient amount of capital is zero.

As in Section 3, we study simple equilibria that can be implemented by a mechanism designer’s

proposal. Here, a proposal consists of (µ, o, φ,R, n), where the only new element is the proposed

proportion of buyers entering the DM. The trading protocols are defined as before and the strategies

and simple equilibria can be defined as before. An outcome then consists of (qp, dpz, d
p
k, z

p, kp, np).

We call such an outcome implementable if it is the equilibrium outcome of a simple equilibrium

associated with a planner’s proposal.

For a given proposal, o, market thickness, θ, and rental price, R, the value function of a buyer

who decides to enter the DM and who holds (z, k) upon entering the DM, V b(z, k), is given by

V b(z, k) = α(θ)
{
u [q(z, k)] +W b [z − dz(z, k), k − dk(z, k)]

}
+ [1− α(θ)]W b(z, k)− v, (28)

and the value function of a buyer with (z, k) upon entering the CM, W b(z, k), solves

W b(z, k) = z +Rk + max

{
βW b(0, 0), max

ẑ≥0,k̂≥0

{
−γẑ − k̂ + T + βV b(ẑ, k̂)

}}
. (29)

We can then further simplify (28) and reformulate the buyer’s portfolio problem in the CM as

max

{
0,max

(z,k)
{−iz − (1 + r −R)k − α(θ) {u [q(z, k)]− dz (z, k)−Rdk(z, k)} − v}

}
, (30)
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where i = γ−β
β . In equilibrium, free entry of buyers implies that the above maximization problem

in (30) should end up with a tie, that is, if (qp, dpz, d
p
k, z

p, kp, np) is an equilibrium outcome, then

− izp − (1 + r −R)kp + α(1/np)[u(qp)− dpz −Rd
p
k]− v = 0. (31)

Finally, following the same reasoning as in Section 3, we can conclude that in equilibrium, R = A.

The following lemma characterizes implementable outcomes.

Lemma 3. An outcome, (qp, dpz, d
p
k, z

p, kp, np), with np ∈ (0, 1) is implementable if and only if

−izp − (1 + r −A)kp + α (1/np) [u(qp)− dpz −Ad
p
k]− v = 0, (32)

dpz ≤ zp, d
p
k ≤ k

p, (33)

−c(qp) + dpz +Adpk ≥ 0, (34)

and (qp, dpz, d
p
k) ∈ CO(zp, kp;A).

Given an outcome, (qp, dpz, d
p
k, z

p, kp, np), social welfare is defined as the discounted sum of

buyers’ and sellers’ expected utilities:

W(qp, dpz, d
p
k, z

p, kp, np) =
1

r

{
npα

(
1

np

)
[u(qp)− c(qp)]− npv + np[Akp − (1 + r)kp]

}
. (35)

We say that an outcome is constrained efficient if it maximizes (35) subject to (32)–(34) and

the pairwise core requirement. Using a similar logic as Lemma 2, we can restrict attention to

outcomes where buyers spend all their asset holdings in pairwise meetings and ignore the pairwise-

core requirement. Hence, we only look for outcomes of the form (qp, zp, kp, np). The first-best level

of output, capital, and measure of buyers entering maximize (35) and is given by (q∗, 0, n∗), where

u′(q∗) = c′(q∗) and [
α (1/n∗)− α′ (1/n∗) /n∗

]
[u(q∗)− c(q∗)] = v. (36)

Throughout this section we assume α(1/n∗)[u(q∗) − c(q∗)] > v, since otherwise, the buyer is not

willing to participate in the DM even at the first-best arrangement.

We remark that a constrained efficient outcome exists under the additional constraint that

zp = 0 and the optimal value for welfare is unique, denoted by Wc, which may be zero. It will also

be useful to define a threshold for the fixed cost of entering the DM,

v̄ =
α(1/n∗)[c(q∗)(u(q̄)− c(q̄))− c(q̄)(u(q∗)− c(q∗))]

c(q∗)− c(q̄)
> 0,

26



where q̄ < q∗ solves u′(q̄)/c′(q̄) = (1 + r)/A. We also define Ā = 1/[(1 + r)(1 + i∗)].

Proposition 4. For any i ≥ 0, a constrained efficient outcome, (qp(i), zp(i), kp(i), np(i)), exists,

and satisfies the following.

1. Let i∗ = α(1/n∗)[u(q∗)−c(q∗)]−v
c(q∗) > 0. Then, for all i ∈ [0, i∗], the constrained-efficient outcome,

(qp(i), zp(i), kp(i), np(i)), is unique, and satisfies qp(i) = q∗, zp(i) ≥ c(q∗), kp(i) = 0, and

np(i) = n∗.

2. Suppose v < v̄ or A < Ā. There exists ī > i∗ such that for all i ∈ (i∗, ī], the unique

constrained-efficient outcome, (qp(i), zp(i), kp(i), np(i)), satisfies qp(i) < q∗, zp(i) = c(qp),

kp(i) = 0, and np(i) < n∗. Moreover, np(i) is strictly decreasing in i ∈ (i∗, ī].

3. Suppose A = 0. There exists ī such that i > ī implies that the constrained-efficient outcome

is autarky.

4. Suppose Wc > 0. Then, if i > ī, any constrained-efficient outcome, (qp(i), zp(i), kp(i), np(i)),

satisfies kp(i) > 0.

When A = 0, there is no capital production in the economy and hence is a special case of

Proposition 4. For this case and for cases where A < Ā, the findings in Proposition 4 resemble

some aspects of Proposition 2. In both cases, the first-best is achievable for a range of low inflation

rates, and the buyer’s matching probability (eα(1/e) for Proposition 2 and α(1/n) here) increases

with inflation for a range of intermediate inflation rates. With endogenous participation, this

result is also similar to Liu, Wang, and Wright (2011) and captures the idea that inflation induces

individuals to trade more quickly. Note that we obtain the first best for a range of low inflation

rates, while the first best only occurs as a knife-edge case in Liu, Wang, and Wright (2011). Finally,

both models without capital imply the economy collapses to autarky for high inflation rates.

We also remark that Wc > 0 when A is close to 1 + r. When A is large and hence the use

of capital is permitted, the findings in Proposition 4 also have similar predictions as Proposition

3. First, under a sufficient condition (v ≤ v̄), the capital stock remains at its first-best level while

the buyer’s matching probability rises for a range of intermediate inflation rates. Second, capital

overaccumulation is bound to occur for sufficiently high inflation rates. Together, our findings in

Proposition 3 and Proposition 4 suggest that intermediate inflation affects the buyer’s matching

probability, but not capital accumulation. In addition, both models predict a Tobin effect but only

for high inflation rates.

Numerical examples illustrating the effects of inflation with endogenous participation are sum-

marized in Figures 21–26. We set b = 0.0001, σ = 0.5, κ = 1, r = 0.02, A = 0.9, and v = 0.4. With
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Figure 21: Output per Match Figure 22: Measure of Buyers

Figure 23: Aggregate Output Figure 24: Matching Probability

1 + r > A, k∗ = 0. According to Figure 24, the buyer’s matching probability increases monoton-

ically when inflation is in an intermediate range. In addition, the economy does not collapse into

autarky, as can be seen in Figures 21 and 22 where output and the measure of buyers both remain

strictly positive.

5 Concluding Remarks

In this paper, we adopt mechanism design to revisit some classical issues in monetary economics,

namely the long run effects of inflation on output, search efforts, and capital accumulation as well

as the social costs of inflation. We develop a tractable monetary model featuring costly search

efforts to endogenize the frequency of trade, capital accumulation to endogenize the choice of a

means of payment, and an endogenous trading mechanism that adjusts with the inflation tax.

The model is able to replicate several qualitative patterns emphasized in both empirical macro

studies and historical anecdotes, including monetary superneutrality for a range of low inflation

rates, non-linearities in trading frequencies and aggregate output, and substitution of money for

capital for high inflation rates. While we acknowledge that certain aspects of our findings have

appeared separately in previous studies, we show how they are intimately related by all being fea-

tures of an optimal trading mechanism. That changes in inflation can have severe consequences

on economic exchange and social interactions has also been emphasized by economic historians
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Figure 25: Capital Figure 26: Welfare

(Bresciani-Turroni (1931), Heynmann and Leijohnhufvud (1995), O’Dougherty (2002)). Nonethe-

less, there are important issues our paper abstracts from. Here we remark on a few caveats to our

analysis and posit some directions for future research.

Optimal Trading Mechanism

In our framework, the economy’s trading mechanism evolves to the optimal mechanism as the

inflation rate changes. The inflation rate itself however is taken as exogenous, and our focus is to

study the consequences of changes in inflation. Importantly however, we do endogenize society’s

trading mechanism and obtain very different results from previous studies, most of which treat the

trading mechanism as a primitive. Indeed we show that under the optimal mechanism, the hot

potato effect and substitution between money and capital are both optimal ways of responding to

the inflation tax. Although it is unlikely for societies to change trading patterns for small changes

in inflation, it seems plausible that societies would adjust trading mechanisms for large changes

and our results are qualitatively in line with historical episodes of such changes.

We also remark that some of our results are robust to alternative trading mechanisms in the

DM. In the Supplemental Material, Section 2, we assume agents meet in a centralized location

in the first stage and show that a version of our model with competitive pricing also delivers

non-monotone search intensity.22 Due to the equivalence between competitive equilibrium and

the core, this arrangement is still consistent with our mechanism design approach respecting the

core requirement. However, there are some notable differences compared with our previous findings.

First, under competitive pricing, search intensity can rise with inflation but only near the Friedman

rule. Since a strictly convex production cost delivers marginal cost pricing, the buyer’s surplus can

increase with inflation, but only for sufficiently small inflation rates. Second, the competitive

equilibrium is generically inefficient due to the congestion externality: while the Friedman rule

delivers the first-best level of output, search intensity is either too high or too low. Consequently, it

22We thank Guillaume Rocheteau for making this suggestion to us.
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is possible for inflation to increase welfare near the Friedman rule if search intensity is inefficiently

low. Finally, we conjecture that it cannot deliver rate-of-return dominance for any inflation rate.

While money and capital can coexist under Walrasian pricing, there will be rate-of-return equality,

similar to Lagos and Rocheteau (2008).

Other Substitutes for Domestic Currency

Our model assumes that capital goods are the only alternative means of payments to money.

However, capital goods in the model can be interpreted more broadly to include other real assets

that may provide a hedge against inflation. This includes the use of assets not only for immediate

settlement but as collateral (Caballero (2006)).23 An example is the use of home equity as collateral

to finance future consumption (Mian and Sufi (2011)). Moreover, individuals often resort to using

foreign currencies for transactions during periods of high or hyperinflation (Calvo and Vegh (1992)).

While our current framework cannot fully accommodate for the circulation of foreign currencies, an

extension of our model to multiple countries and currencies is a fruitful topic for future research.

Such a model could then determine how the presence of foreign currencies affects the consequences

of inflation on international trade and welfare, as in Zhang (2014).

23The role of assets as collateral also appears in Kiyotaki and Moore (2008) where assets do not change hands along
the equilibrium path. This would entail DM trades using secured credit with capital playing the role of collateral.
Then in the CM, debtors would settle obligations in numéraire. In our current set-up, capital goods are transferred
between individuals and there is finality in each DM trade.

30



6 Appendix: Proofs

Proof of Proposition 1

We proved the necessity of constraints (12)-(16) in the main text. Here we prove their sufficiency.

Let (qp, dpz, d
p
k, z

p, kp, ep) be an outcome that satisfies (12)-(16) and the pairwise core requirement.

Consider the following trading mechanism with R = F ′(kp):

1. If (z, k) ≥ (zp, kp), then

o(z, k) ∈ arg max
q,dz ,dk

{dz +Rdk − c(q)} (37)

s.t. u(q)− dz −Rdk ≥ u(qp)− dpz −Rd
p
k,

q ≥ 0, dz ∈ [0, z], dk ∈ [0, k].

2. Otherwise,

o(z, k) ∈ arg max
q,dz ,dk

{dz +Rdk − c(q)} (38)

s.t. u(q)− dz −Rdk ≥ 0,

q ≥ 0, dz ∈ [0, z], dk ∈ [0, k].

Solutions to the maximization problems (37) and (38) exist, and are denoted by o(z, k) =

[q(z, k), dz(z, k), dz(z, k)]. Each solution has a unique q(z, k). Although dz and dk may not be

uniquely determined, we select the solution such that dz(z, k) = z if it exists and dk(z, k) = 0

otherwise for any (z, k) 6= (zp, kp). Indeed, in the Supplemental Material, Section 1, we show that

the total wealth transfer is in fact uniquely determined.

To show that (qp, zp, kp) is a solution to (37) for (z, k) = (zp, kp), notice that (37) is the dual

problem that defines the core of a pairwise meeting. Because (qp, zp, kp) ∈ CO(zp, kp;R), it is also

a solution to (37). This gives us a well-defined mechanism, o.

Now we show that the following strategy profile, (s∗b , s
∗
s), form a simple equilibrium: for all t and

for all ht, (s∗b)
ht,0(z, k) = ep if (z, k) ≥ (zp, kp), (s∗b)

ht,0(z, k) = 0 otherwise; for all portfolios (z, k),

(s∗b)
ht,1(z, k) = yes for all portfolios (z, k), and (s∗s)

ht,1(z, k) = yes; for all portfolios (z, k) and

all responses (ab, as), (s∗b)
ht,2(z, k, ab, as) = (zp, kp). In words, irrespective of their portfolios when

entering the CM, buyers exit the CM with their proposed portfolios, (zp, kp). The effort choice is

ep if the buyer holds no less than the proposed portfolio in both assets; it is zero otherwise. In the

DM they always say yes to the proposals. We show that s∗b and s∗s are optimal strategies following
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any history, given that all other agents follow (s∗b , s
∗
s).

Conditions (12) and (15), as well as the constraints in (37) and (38), ensure that both buyers

and sellers are willing to respond with yes to the mechanism, both on and off equilibrium paths.

Now, by (37) and (38), the buyer’s surplus is given by

u [q(z, k)]− dz (z, k)−Rdk(z, k) = u(qp)− dpz −Rd
p
k if (z, k) ≥ (zp, kp); (39)

u [q(z, k)]− dz (z, k)−Rdk(z, k) = 0 otherwise.

As a result, because ep satisfies (14) and R = F ′(kp), it follows that e(z, k) = ep if (z, k) ≥ (zp, kp)

and e(z, k) = 0 otherwise. Now consider the problem (7). By (39), any choice (z, k) with (z, k) ≥
(zp, kp) are strictly dominated by (zp, kp) and other choices are dominated by (0, 0), but (zp, kp) is

better than (0, 0) by (12). This implies that (zp, kp) is the unique solution to the problem (7). �

Proof of Lemma 1

Under the constraint kp = 0, by Proposition 1, a constrained-efficient outcome, (qp, dpz, zp, ep),

solves

max
(q,dz ,z,e)

eα(1/e)[u(q)− c(q)]− ψ(e) (40)

subject to −iz + eα(1/e)[u(q)− dz]− ψ(e) ≥ 0, (41)

ψ′(e) = α(1/e)[u(q)− dz], (42)

−c(q) + dz ≥ 0, (43)

dz ≤ z, (44)

and the pairwise core requirement.

Call the problem (40)-(44) program A and (21)-(24) program B. Suppose (qp, dpz, zp, ep) is a

solution to A. Because zp ≥ dpz,

−izp + epα(1/ep)[u(qp)− dpz]− ψ(ep) ≤ −idpz + epα(1/ep)[u(qp)− dpz]− ψ(ep), (45)

and hence (qp, dpz, ep) satisfies the constraints in program B. Now, if (q′, d′z, e
′) has a higher value

than that of (qp, dpz, ep), then, because (q′, d′z, z
′, e′) with z′ = d′z also satisfies the constraints

(pairwise core because d′z = z′) in program A, it also has a higher value than (qp, dpz, zp, ep), a

contradiction. Thus, (qp, dpz, ep) solves B as well.

Conversely, suppose that (qp, dpz, ep) solves program B. Then, by setting zp = dpz, (22) implies

(41), and hence (qp, dpz, zp, ep) satisfies the constraints in A (note that the pairwise-core is satisfied
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because zp = dpz). If there is another (q′, d′z, z
′, e′) that gives a higher value than (qp, dp, zp, ep),

then (q′, d′, e′), which also satisfies the constraints in B, also gives a higher value than (qp, dpz, ep),

a contradiction. Thus, (qp, dpz, zp, ep) solves A as well.

We now show that any solution, (qp, dpz, ep), to (21)-(24) is such that qp ≤ q∗, dpz ≤ u(q∗), and

ep ≤ ê where ê is given by (25).

To show that qp ≤ q∗, suppose by contradiction that qp > q∗. Then the planner could decrease qp

to q∗ to increase trade surplus while changing the transfer of real balances to d′z = u(q∗)−u(qp)+dpz.

Note that in the new outcome (q∗, d′z, e
p) the buyer surplus remains the same, so constraints (22)

and (23) hold. Because q∗ < qp, u(q∗) − c(q∗) > u(qp) − c(qp) ≥ u(qp) − dpz and hence d′z ≤ c(q∗),

i.e., (24) holds. But the new outcome has a strictly higher welfare, a contradiction. This proves

qp ≤ q∗. With qp ≤ q∗, it follows from (22) that dpz ≤ u(q∗). Then from (23), ψ′(ep)/α(1/ep) =

u(qp)− dpz ≤ u(q∗)− c(q∗). Hence ep ≤ ê such that ê solves (25).

The above arguments also show that we may impose the constraints qp ≤ q∗, dpz ≤ u(q∗),

and ep ≤ ê with no loss in generality. Moreover with these additional constraints, (21)–(24) is a

maximization problem with a continuous objective function and a compact feasible set. Hence a

solution exists. �

Proof of Proposition 2

(1) We first show that for all i ∈ [0, i∗], the first-best solution, (q∗, e∗, d∗z), satisfies constraints

(22)-(24). (23) holds by construction. Hence, α(1/e∗)[u(q∗)− d∗z] = ψ′(e∗). Plugging this into (22),

it is straightforward to verify that (22) holds if and only if

i ≤ i∗ =
e∗ψ′(e∗)− ψ(e∗)

u(q∗)− ψ′(e∗)/α(1/e∗)
.

Finally, (24) holds if and only if u(q∗) − ψ′(e∗)/α(1/e∗) ≥ c(q∗), that is, α(1/e∗)[u(q∗) − c(q∗)] ≥
ψ′(e∗). But, by (20) and the fact that α′(θ) > 0 for all θ, α(1/e∗)[u(q∗)−c(q∗)] = [α′(1/e∗)/e∗][u(q∗)−
c(q∗)] + ψ′(e∗) > ψ′(e∗).

(2) We prove by two claims below.

Claim 1. (i) When i = i∗, the seller’s constraint (24) holds with strict inequality at the optimum,

(q∗, d∗z, e
∗); (ii) when i > i∗, the buyer’s constraint (22) binds at the optimum; (iii) when i > i∗,

qp < q∗ at the optimum.

By Claim 1, for i > i∗, (22) binds and hence, together with (23), there is a unique solution for
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q and dz as functions of e and i:

dz(e, i) =
eψ′(e)− ψ(e)

i
, q(e, i) = u−1

(
eψ′(e)− ψ(e)

i
+

ψ′(e)

α(1/e)

)
. (46)

Let

g(e, i) =
eψ′(e)− ψ(e)

i
+

ψ′(e)

α(1/e)
and f(x) = u−1(x).

The objective function can be written as

G(e, i) = eα(1/e) {u[q(e, i)]− c[q(e, i)]} − ψ(e)

= eα(1/e) {g(e, i)− c [f(g(e, i))]} − ψ(e).

Claim 2. There exists an ī > i∗ such that for all i ∈ [i∗, ī], there is a unique maximizer ep(i) for

maxe∈[0,1]G(e, i) and satisfies d
dee

p(i) > 0 for all i ∈ [i∗, ī]. Moreover, (q(ep(i), i), ep(i), dz(e
p(i), i))

is the unique constrained-efficient outcome for all i ∈ [i∗, ī].

The results follow directly from Claim 2. Now we prove the two claims.

Proof of Claim 1. (i) We have shown it in (1).

(ii) To show that (22) binds for all i > i∗, consider the Lagrangian associated with (21), (22), (23),

(24) (we ignore the nonnegativity constraints as they are irrelevant for this binding argument):

L(q, dz, e;λ, µ, η) = eα(1/e)[u(q)− c(q)]− ψ(e)

+ λ{−idz + eα(1/e)[u(q)− dz]− ψ(e)}

+ µ{dz − c(q)}

+ η{ψ′(e)− α(1/e)[u(q)− dz]},

where λ ≥ 0, µ ≥ 0, η (which may be negative), are the Lagrange multipliers associated with

(22), (24), and (23). From the Kuhn-Tucker Theorem, the following are the first-order necessary

conditions taken with respect to q, dz, e:

epα(1/ep)[u′(qp)− c′(qp)] + λepα(1/ep)u′(qp)− µc′(qp)− ηα(1/ep)u′(qp) = 0, (47)

[α(1/ep)− α′(1/ep)/ep][u(qp)− c(qp)]− ψ′(ep) + λ{[α(1/ep)− α′(1/ep)/ep][u(qp)− dpz]− ψ′(ep)}

= −η{ψ′′(ep) + [α′(1/ep)/(ep)2][u(qp)− dpz]}, (48)

λ[i+ epα(1/ep)] = µ+ ηα(1/ep). (49)

In addition, (22) and (24) are not binding only if λ = 0 and µ = 0, respectively.
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Here we show that (22) binds at the optimum for all i > i∗. Suppose, by contradiction, that

(22) does not bind and hence, λ = 0. It also implies that qp > 0 and ep > 0. From (24) and qp > 0,

we have dpz > 0. Combining (47) and (49) yields

u′(qp)

c′(qp)
=

epα(1/ep) + µ

epα(1/ep) + µ− λi
. (50)

From (50) and λ = 0, qp = q∗. From (49) and λ = 0, −ηα(1/ep) = µ. Consider two cases. (a)

µ = 0. Then, η = 0, and from (48), e = e∗, a contradiction. (b) µ > 0. Then, (24) is binding and

hence dpz = c(q∗). By (49), µ = −ηα(1/ep) > 0. But then by (48),

[α(1/ep)− α′(1/ep)/ep][u(q∗)− c(q∗)]− ψ′(ep) > 0,

and hence ep < e∗. However by (23),

ψ′(ep) = α(1/ep)[u(q∗)− c(q∗)],

and, because dpz = c(q∗) < d∗z, this implies ep > e∗. This leads to a contradiction. This proves

λ > 0 and hence (22) is binding.

(iii) Here we prove that qp < q∗ for i > i∗. From (50), qp 6= q∗ unless λ = 0, which is violated when

i > i∗. Then qp < q∗ follows from Lemma 1. �

Proof of Claim 2. We have three steps: first, we show that there is an open neighborhood (e0, e1)×
(i0, i1) around (e∗, i∗) and a continuously differentiable implicit function ep : (i0, i1)→ (e0, e1) such

that for all i ∈ (i0, i1), ep(i) is the unique e ∈ (e0, e1) such that ∂
∂eG(ep(i), i) = 0, and ep(i) is the

unique local maximizer of G(·, i) in that neighborhood, with (ep)′(i) > 0. Then, we show that, for

some i2 ∈ (i∗, i1] it is also the global maximizer for all i ∈ (i∗, i2]. Finally, we show that we can

obtain the constrained efficient outcome from ep(i).

First we show that
∂G(e∗, i∗)

∂e
= 0,

∂2

∂e2
G(e∗, i∗) < 0 (51)
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as follows:

∂G(e∗, i∗)

∂e
=

[
α(1/e∗)− α′(1/e∗)

e∗

]
[g(e∗, i∗)− c [f(g(e∗, i∗))]]

+ e∗α(1/e∗)
∂g(e∗, i∗)

∂e

[
1− c′[f(g(e∗, i∗))]f ′(g(e∗, i∗))

]︸ ︷︷ ︸
= 0 at q = q∗

−ψ′(e∗) = 0.

∂2G(e∗, i∗)

∂e2
=

[
α(1/e∗)− α′(1/e∗)

e∗

]
∂g(e∗, i∗)

∂e

[
1− c′[f(g(e∗, i∗))]f ′(g(e∗, i∗))

]︸ ︷︷ ︸
= 0 if q = q∗

+ [g(e∗, i∗)− c [f(g(e∗, i∗))]]︸ ︷︷ ︸
(+) since u(q∗)− c(q∗) > 0

α′′(1/e∗)

e∗3︸ ︷︷ ︸
(−) since α′′ < 0

− ψ′′(e∗)︸ ︷︷ ︸
(+) since ψ′′ > 0

+ eα(1/e∗)

[
∂g(e∗, i∗)

∂e

]2

︸ ︷︷ ︸
(+)

[−c′′[f ′(g(e∗, i∗))]2 − c′[f(g(e∗, i∗))f ′′]︸ ︷︷ ︸
(−)

< 0.

Then, by Implicit Function Theorem (IFT), there is an open neighborhood (e0, e1) × (i0, i1)

around (e∗, i∗) and a continuously differentiable implicit function ep : (i0, i1) → (e0, e1) such that

for all i ∈ (i0, i1), ep(i) is the unique e ∈ (e0, e1) such that

∂

∂e
G(ep(i), i) = 0,

and that ∂2

∂e2
G(e, i) < 0 in that neighborhood (note that G is continuously twice differentiable).

This shows that G(e, i) is locally concave, and, as the unique solution to the first-order conditions,

ep(i) is the local maximizer in that neighborhood.

To show that it is also the global maximizer, first consider M(i) = maxe/∈(e0,e1)G(e, i). By the

Theorem of the Maximum, M(i) is continuous andM(i∗) < G(e∗, i∗). Let δ = G(e∗, i∗)−M(i∗) > 0.

Then by continuity, there exists an i2 ∈ (i∗, i1] such that if i ∈ [i∗, i2], then M(i) ≤M(i∗) + δ/3 <

G(e∗, i∗)− δ/3 ≤ G(ep(i), i). Hence, for all i ∈ [i∗, i2], ep(i) maximizes G(·, i).
Because the function −c(q(e, i)) + dz(e, i) is continuous and because −c(q∗) + d∗z > 0 by Claim

1 (i), it follows from continuity that there exists an i3 ∈ (i∗, i2] such that for all i ∈ (i∗, i3],

−c(q(ep(i), i)) + dz(e
p(i), i) ≥ 0. Now we show that (q(ep(i), i), ep(i), dz(e

p(i), i)) is the unique

constrained-efficient outcome for i ∈ (i∗, i3]. Suppose that (q′, e′, d′z) solves (21)-(24). By Claim 1,

(q′, e′, d′z) satisfies (22) at equality and hence q′ = q(e′, i) and d′z = d(e′, i). It follows that G(e′, i) ≤
G(ep(i), i). But, because (q′, e′, d′z) is constrained efficient, G(e′, i) = G(ep(i), i). Moreover, because

we have a unique maximizer for maxeG(e, i), it follows that e′ = ep(i) and hence q′ = q(ep(i), i)
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and d′z = dz(e
p(i), i). This proves that (qp, ep, dpz) = (q(ep(i), i), ep(i), dz(e

p(i), i)) is the unique

constrained-efficient outcome.

Finally, we show that ep(i) is strictly increasing in a neighborhood above i∗. By IFT again,

ep(i) is continuously differentiable, and for all i ∈ (i∗, i3],

d

di
ep(i) = − ∂2

∂e∂i
G(ep(i), i)/

∂2

∂e2
G(ep(i), i). (52)

We compute ∂2

∂e∂iG(e∗, i∗) as follows (note that {1− c′[f(g(e∗, i∗))]f ′(g(e∗, i∗))} = 0):

∂2

∂e∂i
G(e∗, i∗) = e∗α(1/e∗)

∂

∂i
g(e∗, i∗)︸ ︷︷ ︸

(−)

{− c′′[f(g(e∗, i∗))][f ′(g(e∗, i∗))]2︸ ︷︷ ︸
(+)

− c′[f(g(e∗, i∗))]f ′′︸ ︷︷ ︸
(+)

} ∂
∂e
g(e∗, i∗)︸ ︷︷ ︸

(+)

> 0.

By (51) and (52), d
die

p(i∗) > 0. Because ep(i) is continuously differentiable, there exist an i ∈ (i∗, i3]

such that for all i ∈ [i∗, i], d
die

p(i) > 0. To show that dpz < d∗z for i ∈ (i∗, i], we have from (23),

dpz = u(qp)− ψ′(ep)/α(1/ep) < u(q∗)− ψ′(e∗)/α(1/e∗) = d∗z,

since qp < q∗ from Claim 1 (iii) and ep(i) > e∗. �

(3) By (23), dpz = u(qp)− ψ′(ep)/α(1/ep). Thus, we may rewrite (22) and (24) as

ψ′(ep)

α(1/ep)
+
epψ′(ep)− ψ(ep)

i
≥ u(qp), (53)

u(qp)− c(qp) ≥ ψ′(ep)

α(1/ep)
. (54)

By Lemma 1, for any constrained-efficient outcome, ep(i) ≤ ê < 1.

Fix some e ∈ (0, ê]. Let qe satisfy

u(qe)− c(qe) = ψ′(e)/α(1/e).

Since ψ′(e)/α(1/e) is increasing in e and continuous for e ∈ (0, 1), it follows that qe ∈ (0, q∗] is

uniquely determined and varies continuously in e. Let

i(e) =
eψ′(e)− ψ(e)

u(qe)− ψ′(e)/α(1/e)
.
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Then, i(e) ∈ (0,∞) and is continuous in e.

Now we show that if i > i(e), then there is no q such that (e, q) satisfies (53) and (54) with

respect to i. Suppose, by contradiction, that (e, q) satisfies (53) and (54) with respect to i. Then,

by (54),

u(q)− c(q) ≥ ψ′(e)/α(1/e) = u(qe)− c(qe),

and hence, q ≥ qe. But by (53),

u(q) ≤ ψ′(e)

α(1/e)
+
eψ′(e)− ψ(e)

i
<

ψ′(e)

α(1/e)
+
eψ′(e)− ψ(e)

i(e)
= u(qe),

which implies that q < qe, a contradiction.

Finally, for each e ∈ (0, ê], let

ie = max{i(e′) : e′ ∈ [e, ê]}.

Notice that ie is well-defined because i(e) is continuous and [e, ê] is a compact set. Now, if i > ie,

then for any e′ ∈ [e, ê], i > ie′ and hence (e′, q) does not satisfy (53) and (54) with respect to i for

any q. Thus, ep(i) < e. �

(4) By Claim 1 in (2), the buyer constraint (22) is binding for any constrained-efficient outcome,

and thus we can determine dz and q by (e, i). Recall that dz(e, i) = eψ′(e)−ψ(e)
i . Define h(e) = ψ′(e)

α(1/e) .

Then, h′ > 0, h(0) = 0, h(1) =∞, ∂
∂edz > 0, dz(0, i) = 0, and dz(1, i) =∞.

Recall also that q(e, i) = u−1[h(e) + dz(e, i)] if (q, e) satisfies (22) at equality and (23). As in

(3), we now work with (53) and (54). Then, (q, e) satisfies (53) if q = q(e, i) and it satisfies (54)

if, in addition to q = q(e, i), u(q) − c(q) ≥ h(e). These conditions amount to c−1 ◦ u(dz(e, i)) ≥
h(e) + dz(e, i). First we show that for e close to 1,

c−1 ◦ u(dz(e, i)) < h(e) + dz(e, i). (55)

By concavity of c−1◦u and the Inada conditions, lime→1
c−1◦u(dz(e,i))

dz(e,i) = 0, and hence, for e sufficiently

close to 1, [c−1 ◦ u(dz(e, i))]/dz(e, i) < 1 < 1 + h(e)/dz(e, i), and this proves (55).

Here we show that for e sufficiently small,

c−1 ◦ u(dz(e, i)) > h(e) + dz(e, i). (56)
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Notice that ∂
∂edz(e, i) = eψ′′(e)/i and ψ′′(0) = A > 0 by assumption. Then,

lim
e→0

h′(e) = lim
e→0

ψ′′(e)α(1/e) + ψ′(e)α′(1/e)/e2

α(1/e)2
∈ [A, 2A],

where lime→0 α(1/e) = 1, lime→0 α
′(1/e)/e ≤ lime→0 α(1/e) = 1, and lime→0 ψ

′(e)/e = ψ′′(0) = A.

Note that the limit may not exist but for e small h′(e) lies in the neighborhood of [A, 2A]. Thus, for

sufficiently small e, ∂
∂edz(e, i) ∈ (eA/2i, 2Ae/i) and h′(e) ∈ (A/2, 4A). For such e’s, dz(e, i)+h(e) <

(4A)e+ (A/i)e2.

By assumption, there exists a δ < 0.5 for which

lim
q→0

(c−1 ◦ u)′(q)q0.5+δ > 0.

Therefore, for sufficiently small q, (c−1 ◦ u)′(q) > (0.5 − δ)Kq−0.5−δ for some K > 0, and hence

c−1 ◦ u(q) > Kq0.5−δ for all such q’s. Thus, for e sufficiently small, ∂
∂edz(e, i) > eA/2i and hence

dz(e, i) > e2A/i, and we have

c−1 ◦ u(dz(e, i)) ≥ Kdz(e, i)0.5−δ > K((A/4i)e2)0.5−δ ≡ Le1−2δ.

Because lime→0
Le1−2δ

(4A)e+(A/i)e2
=∞, it follows that, for e sufficiently small,

c−1 ◦ u(dz(e, i)) > Le1−2δ > (4A)e+ (A/i)e2 ≥ h(e) + dz(e, i).

This proves (56).

Now, by (55) and (56), and by the Intermediate Value Theorem, there exists ẽi > 0 such that

dz(ẽi, i) = c ◦ u−1(h(ẽi) + dz(ẽi, i)).

Then, (q(ẽi, i), ẽi) satisfies (53) and (54). Moreover, the outcome (q(ẽi, i), ẽi) is associated with

positive welfare given by W(i) (we use (23) in the second equality):

W(i) = ẽiα(1/ẽi)[u(q(ẽi, i))− c(q(ẽi, i))]− ψ(ẽi) = ẽiψ
′(ẽi)− ψ(ẽi) > 0.

�
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Proof of Lemma 2

From Proposition 1, an outcome (q, dk, k, e) is implementable if and only if

−[1 + r − F ′(k)]k + eα(1/e)[u(q)− F ′(k)dk] ≥ ψ(e), (57)

−c(q) + F ′(k)dk ≥ 0, (58)

1 + r ≥ F ′(k), (59)

ψ′(e) = α(1/e)[u(q)− F ′(k)dk], (60)

and (q, dk) ∈ CO(0, k;R) with R = F ′(k).

(1) Suppose that (1 + r)k∗ ≥ u(q∗)− ψ′(e∗)
α(1/e∗) . We show that the first-best allocation, (q∗, d∗k, k

∗, e∗),

is implementable, where

d∗k =
1

1 + r

[
u(q∗)− ψ′(e∗)

α(1/e∗)

]
.

Because F ′(k∗) = 1 + r, (57) and (59) are satisfied. Note that d∗k ≤ k∗ because (1 + r)k∗ ≥
u(q∗) − ψ′(e∗)

α(1/e∗) and (60) is satisfied by construction. Finally, (58) holds if and only if u(q∗) −
ψ′(e∗)/α(1/e∗) ≥ c(q∗), that is, α(1/e∗)[u(q∗) − c(q∗)] ≥ ψ′(e∗). But, by (20) and the fact that

α′(θ) > 0 for all θ, α(1/e∗)[u(q∗)− c(q∗)] = [α′(1/e∗)/e∗][u(q∗)− c(q∗)] + ψ′(e∗) > ψ′(e∗). �

(2) Suppose that (1 + r)k∗ < u(q∗)− ψ′(e∗)
α(1/e∗) . Here we show that k0 > k∗ and hence the first-best

is not implementable and that Wc >W0.

First we show that W0 > 0. Consider the outcome (q̄, d̄k, k
∗, ē) given as follows: q̄ = u−1[(1 +

r)k∗] > 0, ē solves

[α(1/e)− α′(1/e)/e][u(q̄)− c(q̄)] = ψ′(e),

d̄k = u(q̄) − ψ′(ē)/α(1/ē) > c(q̄). The outcome is implementable and is associated with positive

welfare.

Second, we show that a constrained-efficient outcome (under the additional constraint z = 0),

(qc, dck, k
c, ec), exists. Note first that any outcome (q, dk, k, e) with q > q∗ is strictly dominated

by another outcome with q′ ≤ q∗; the proof follows exactly the same arguments as in the proof of

Lemma 1. Second, any outcome (q, dk, k, e) with dk < k is strictly dominated as well. If k > k∗,

then we can decrease k and obtain higher welfare. Otherwise, assume that k = k∗ and consider

two cases: (i) q < q∗. Then, consider another outcome (q′, d′k, k, e) such that q < q′ < q∗ and that

u(q′) − F ′(k)d′k = u(q) − F ′(k)dk. So buyer surplus is unchanged; the seller constraint is satisfied

(note that u(q′)− c(q′) > u(q)− c(q)):

F ′(k)d′k − c(q′) = u(q′)− c(q′)− u(q) + F ′(k)dk > −c(q) + F ′(k)dk ≥ 0.
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So (q′, d′k, k, e) is implementable but has strictly higher welfare. (ii) q = q∗ and k = k∗. Then,

because (1 + r)k∗ < u(q∗)− ψ′(e∗)
α(1/e∗) and because (q, dk, k, e) satisfies (60), we have

ψ′(e)/α(1/e) = [u(q∗)− (1 + r)dk] ≥ [u(q∗)− (1 + r)k∗] > ψ′(e∗)/α(1/e∗), (61)

and hence e > e∗. So lowering e will increase welfare. Consider (q, d′k, k, e
′) with dk < d′k < k = k∗

and that
ψ′(e′)

α(1/e′)
= [u(q∗)− F ′(k∗)d′k].

So e′ ∈ (e∗, e). Then, (q, d′k, k, e
′) is implementable but has strictly higher welfare.

Thus, we may only consider outcomes with k = dk, and q ≤ q∗. This implies that k ≤ k̂ that

is given by

F ′(k̂)k̂ = u(q∗). (62)

Therefore, we may consider outcomes of the form (q, k, k, e) that satisfies (57)-(60) and q ∈ [0, q∗],

k ∈ [0, k̂]. Thus, we have a maximization problem of a continuous objective function with a compact

feasible set, which admits a maximum.

Now we show that, in any constrained-efficient outcome, (qc, dck, k
c, ec), kc > k∗. Suppose, by

contradiction, that kc = k∗. Consider two cases.

(a) qc < q∗. We have shown that dck = k∗. Note that because kc = k∗ and because of (60), (57)

holds with strict inequality. Let k′ > k∗ be sufficiently close to k∗ such that, by setting q′ to satisfy

u(q′)− F ′(k′)k′ = u(qc)− F ′(k∗)k∗, we have

qc < q′ < q∗ and ecα(1/ec)[u′(q′)− c′(q′)] g
′(k′)

u′(qc)
> [1 + r − F ′(k′)],

where g(k) = F ′(k)k, a concave function by assumption, and that (57) holds for q = q′, e = ec, and

F ′(k)dk = F ′(k′)k′. Note that the second requirement to define k′ can be satisfied because the right-

side is zero at k∗ but the left-side is bounded away from zero. Because u′(q′)−c′(q′) > u(qc)−c(qc),
it follows that F ′(k′)k′ > c(q′). Thus, (q′, k′, k′, ec) is implementable but the welfare difference is

ecα(1/ec)[u(q′)− c(q′)− u(qc) + c(qc)]− {[(1 + r)k′ − F (k′)]− [(1 + r)k∗ − F (k∗)]}

> ecα(1/ec)[u′(q′)− c′(q′)] g
′(k′)

u′(qc)
[k′ − k∗]− [(1 + r)− F ′(k′)][k′ − k∗] > 0.

(b) qc = q∗, and hence, by (61), ec > e∗. Let k′ > k∗ be sufficiently close to k∗ such that, by setting
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e′ to satisfy u(q∗)− F ′(k′)k′ = ψ′(e′)/α(1/e′), we have

ec > e′ > e∗ and l′(e′)
g′(k′)

maxe∈[e′,e0] j
′(e)

> [1 + r − F ′(k′)],

where j(e) = ψ′(e)/α(1/e) and l(e) = eα(1/e)h(q∗) − ψ(e) (note that j(e) is strictly increasing).

Again, the second requirement that defines e′ above can be satisfied because 1 + r − F ′(k∗) = 0

but the left-hand side is bounded away from zero. (q∗, k′, k′, e′) is implementable but the welfare

difference is

[l(e′)− l(ec)]− {[(1 + r)k′ − F (k′)]− [(1 + r)k∗ − F (k∗)]}

> l′(e′)
g′(k′)

maxe∈[e′,ec] j′(e)
[k′ − k∗]− [(1 + r)− F ′(k′)][k′ − k∗] > 0.

Therefore, we have kc > k∗. �

Proof of Proposition 3

(1) The characterization and uniqueness of the first-best allocation as given by (18)-(20) follows

similar arguments to those in Proposition 2 (1). Now we show that for all i ∈ [0, i∗∗], the outcome

(q∗, d∗z, k
∗, z∗, k∗, e∗) with

d∗z = u(q∗)− (1 + r)k∗ − ψ′(e∗)

α(1/e∗)
> 0

satisfies constraints (12)-(16). Clearly, F ′(k∗) = 1 + r implies (16) is satisfied. Note that (14) holds

by construction. Plugging this into (12), it is straightforward to verify that it holds if and only if

i ≤ i∗∗ by definition of i∗∗. Note that (15) holds if and only if u(q∗)−ψ′(e∗)/α(1/e∗) ≥ c(q∗), that

is, α(1/e∗)[u(q∗)− c(q∗)] ≥ ψ′(e∗). But, by (20) and the fact that α′(θ) > 0 for all θ,

α(1/e∗)[u(q∗)− c(q∗)] = α′(1/e∗)/e∗[u(q∗)− c(q∗)] + ψ′(e∗) > ψ′(e∗).

�

(2) First we show that when i > i∗∗, any outcome (q, dz, dk, z, k, e) with dz < z or dk < k is strictly

dominated. Note that any outcome with q > q∗ is strictly dominated by another with q′ ≤ q∗.

The case with dk < k follows the same arguments as those in the proof of Lemma 2. Consider the

case with dz < z and dk = k. If k > k∗, then we may decrease k and dk and increase dz to keep

the buyer surplus unchanged, and by doing so we keep the constraints but increase the welfare.

So assume that k = k∗. If q < q∗, then we may increase both q and dz to keep the buyer surplus

unchanged, and by doing so doing so we keep the constraints but increase the welfare. So assume
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that k = k∗ and q = q∗. Then, by (12) and (14),

eψ′(e)− ψ(e)

i
≥ z > dz = u(q∗)− ψ′(e)/α(1/e)− (1 + r)k∗,

and hence
eψ′(e)− ψ(e)

u(q∗)− ψ′(e)/α(1/e)− (1 + r)k∗
> i > i∗∗,

which implies that e > e∗. Thus, we may increase dz and decrease e to keep (14) intact, and by

doing so increase welfare.

Thus, we may only consider outcomes with dk = k, dz = z, and with q ≤ q∗. Because q ≤ q∗, to

satisfy (12) it must be the case that F ′(k)k ≤ u(q∗), that is, k ≤ k̂, which is given by (62). Thus,

we may restrict attention to outcomes, (q, z, k, e), that satisfy

−iz − [1 + r − F ′(k)]k + eα(1/e)[u(q)− z − F ′(k)k] ≥ ψ(e), (63)

−c(q) + z + F ′(k)k ≥ 0, (64)

1 + r ≥ F ′(k), (65)

ψ′(e) = α(1/e)[u(q)− z − F ′(k)k]. (66)

Note that because dz = z and dk = k, (q, dz, dk) ∈ CO(z, k;R).

Given these preliminary observations, we follow the same logic as the proof of Proposition 2,

and prove the result by two claims.

Claim 1. (i) When i = i∗∗, the seller’s participation constraint, (64), holds with strict inequality

at the optimum, (q∗, z∗, k∗, e∗); (ii) for all i > i∗∗, the buyer’s participation constraint, (63), binds,

and qp < q∗ at the optimum.

Given that (63) and (66) bind, we can solve for z and q as a function of (k, e, i):

z(k, e, i) =
1

i
{eψ′(e)− ψ(e)− [1 + r − F ′(k)]k},

q(k, e, i) = f

{
g(e, i) +

[−(1 + r) + (1 + i)F ′(k)]k

i

}
,

where

g(e, i) =
1

i
[eψ′(e)− ψ(e)] +

ψ′(e)

α(1/e)
and f(x) = u−1(x).

The objective function can be written as

G(k, e, i) = eα(1/e){u(q(k, e, i))− c(q(k, e, i))} − ψ(e) + F (k)− (1 + r)k. (67)
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Claim 2. There is an ī′ such that for all i ∈ [i∗∗, ī′], there is a unique maximizer, (kp(i), ep(i)), to

max
k∈[k∗,k̂],e∈[0,1]

G(k, e, i),

with zp(i) = z[kp(i), ep(i), i] > 0. Moreover, (qp(i), zp(i), kp(i), ep(i)) is the unique constrained-

efficient outcome (qp(i) = q[kp(i), ep(i), i]), and, if 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗∗ , then d

dee
p(i) > 0

and kp(i) = k∗.

The result follows directly from Claim 2. Now we prove the two claims.

Proof of Claim 1. (i) We have shown it in (1).

(ii) To show that (63) binds for all i > i∗∗, we consider two cases:

(a) At the optimum, kp > k∗. Suppose, by contradiction, that (63) does not bind. Let (z′, k′) be

such that k∗ ≤ k′ < kp but z′+F ′(k′)k′ = zp+F ′(kp)kp, and, by continuity, the tuple (qp, z′, k′, ep)

also satisfies (63). Because k′ < kp, this leads to an increase in the welfare, a contradiction.

(b) At the optimum, kp = k∗. Consider the Lagrangian associated with (63), (64), (65), (66),

q ≥ 0, z ≥ 0, and e ≥ 0:

L(q, z, k, e;λ, µ, ξ, η) = eα(1/e)[u(q)− c(q)] + [F (k)− (1 + r)k]− ψ(e)

+ λ{−iz − [(1 + r)− F ′(k)]k + eα(1/e)[u(q)− z − F ′(k)k]− ψ(e)}

+ µ{[F ′(k)k + z − c(q)]}+ ξ[(1 + r)− F ′(k)]

+ η{ψ′(e)− α(1/e)[u(q)− z − F ′(k)k]},

where λ ≥ 0, µ ≥ 0, ξ ≥ 0, and η are the Lagrange multipliers associated with (63), (64), (65), and

(66). From the Kuhn-Tucker Theorem, the following are the first-order necessary conditions with

respect to q, z, e (with kp = k∗):

epα(1/ep)[u′(qp)− c′(qp)] + λepα(1/ep)u′(qp)− µc′(qp)− ηα(1/ep)u′(qp) = 0, (68)

λ[i+ epα(1/ep)] = µ+ ηα(1/ep), (69)

[α(1/ep)− α′(1/ep)/ep][u(qp)− c(qp)]− ψ′(ep)

+λ{[α(1/ep)− α′(1/ep)/ep][u(qp)− zp − (1 + r)k∗]− ψ′(ep)}

= −η{ψ′′(ep) + [α′(1/ep)/(ep)2][u(qp)− zp − (1 + r)k∗]}, . (70)

In addition, (63) and (64) are not binding only if λ = 0 and µ = 0, respectively.

Here we show that (63) binds at the optimum for all i > i∗∗. Suppose, by contradiction, that

(63) does not bind and hence λ = 0. It also implies that qp > 0 and ep > 0. Then from (64),
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qp > 0, ep > 0, and kp = k∗, we have zp > 0. Combining (68) and (69) yields

u′(qp)

c′(qp)
=

epα(1/ep) + µ

epα(1/ep) + µ− λi
. (71)

From (71), qp = q∗, and hence, from (69) and λ = 0 we have −α(1/ep)η = µ. If µ = 0, then from

(70), ep = e∗, a contradiction. If µ > 0, then (64) is binding and hence dpz + (1 + r)k∗ = c(q∗). By

(69), µ = −ηα(1/ep) > 0. But then, by (70), this implies [α(1/ep) − α′(1/ep)/ep][u(q∗) − c(q∗)] −
ψ′(ep) > 0, and hence ep < e∗. However, by (66), ψ′(ep) = α(1/ep)[u(q∗) − c(q∗)], and, because

c(q∗) < d∗z + (1 + r)k∗, this implies that ep > e∗. This leads to a contradiction. Hence λ > 0 and so

(63) is binding. Moreover, because λ > 0, (71) implies that u′(qp) > c′(qp) and hence qp < q∗. �

Proof of Claim 2. First note that

∂G(k∗, e∗, i∗∗)

∂e
=

[
α(1/e∗)− α′(1/e∗)

e∗

]
[u(q∗)− c(q∗)]− ψ′(e∗) = 0, (72)

∂G(k∗, e∗, i∗∗)

∂k
= e∗α(1/e∗)

{
u′(q∗)− c′(q∗)

} ∂q(k∗, e∗, i∗∗)
∂k

+ F ′(k∗)− (1 + r) = 0.

Now we show that

∂2G(k∗, e∗, i∗∗)

∂k2
< 0,

∂2G(k∗, e∗, i∗∗)

∂e2
< 0,

∂2G(k∗, e∗, i∗∗)

∂k2

∂2G(k∗, e∗, i∗∗)

∂e2
− ∂2G(k∗, e∗, i∗∗)

∂k∂e
> 0.(73)

The second partial derivatives are

∂2G(k∗, e∗, i∗)

∂e2

= α′′(1/e∗)/(e∗)3[u(q∗)− c(q∗)] + e∗α(1/e∗)

[
∂

∂e
q(k∗, e∗, i∗∗)

]2

[u′′(q∗)− c′′(q∗)]− ψ′′(e∗) < 0,

∂2G(k∗, e∗, i∗)

∂k2
= e∗α(1/e∗)

[
∂

∂k
q(k∗, e∗, i∗∗)

]2

[u′′(q∗)− c′′(q∗)] + F ′′(k∗) < 0,

∂2G(k∗, e∗, i∗)

∂k∂e
= e∗α(1/e∗)

[
∂

∂k
q(k∗, e∗, i∗∗)

∂

∂e
q(k∗, e∗, i∗∗)

]
[u′′(q∗)− c′′(q∗)].
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Hence,

∂2G(k∗, e∗, i∗)

∂e2

∂2G(k∗, e∗, i∗)

∂k2

> e∗α(1/e∗)

[
∂

∂e
q(k∗, e∗, i∗∗)

]2

[u′′(q∗)− c′′(q∗)]e∗α(1/e∗)

[
∂

∂k
q(k∗, e∗, i∗∗)

]2

[u′′(q∗)− c′′(q∗)]

=

{
∂2G(k∗, e∗, i∗)

∂k∂e

}2

.

Because of (72) and (73), and by the IFT, there is an open neighborhood O = (k0, k1) ×
(e0, e1)×(i0, i1) around (e∗, i∗) and a continuously differentiable implicit function (kp0, e

p
0) : (i0, i1)→

(k0, k1) × (e0, e1) such that for all i ∈ [i∗∗, i1), [kp(i), ep0(i)] is the unique (k, e) ∈ (k0, k1) × (e0, e1)

such that
∂

∂e
G(kp0(i), ep0(i), i) = 0 and

∂

∂k
G(kp(i), ep0(i), i) = 0,

and another continuously differentiable implicit function ep : (i0, i1) → (e0, e1) such that for all

i ∈ [i∗∗, i1), ep1(i) is the unique e ∈ (e0, e1) such that

∂

∂e
G(k∗, ep1(i), i) = 0,

and that G(·, ·, i) is strictly concave over O. Now, define (kp(i), ep(i)) as

(kp(i), ep(i)) =

 (kp0(i), ep0(i)) if kp0(i) ≥ k∗

(k∗, ep1(i)) otherwise.

Because G(·, ·, i) is strictly concave over O, by the Kuhn-Tucker conditions, (kp(i), ep(i)) is a local

maximizer; using the same arguments as those in Proposition 2, we can show that (kp(i), ep(i)) is

the global maximizer as well, at least for some interval [i∗∗, i2] with i2 ∈ (i∗∗, i1] and, using similar

arguments there about seller participation constraint, one can show

(qp, zp, kp, ep) = (q[kp(i), ep0(i), i], z[kp(i), ep0(i), i], kp(i), ep0(i))

is the unique constrained-efficient outcome for i ∈ [i∗∗, i2]. Note that, by continuity, ep(i) > 0 and

kp(i) is close to k∗ at least locally and hence zp > 0.

Now we we show that if 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗∗ , then kp(i) = k∗ and ep(i) is increasing.

46



For all i ∈ [i∗∗, i2], let q(i) = q(k∗, ep1(i), i),

∂

∂k
G(k∗, ep1(i), i) = ep1(i)α(1/ep1(i))[u′(q(i))− c′(q(i))]f ′[u(q(i))]

{
[1 + r + F ′′(k∗)k∗] + F ′′(k∗)k∗/i

}
.

Because 1 + r + F ′′(k∗)k∗ < −F ′′(k∗)k∗
i∗∗ , there exists i3 ≤ i2 such that for all i ∈ [i∗∗, i3], 1 + r +

F ′′(k∗)k∗ + F ′′(k∗)k∗

i ≤ 0, and hence, for all such i’s, ∂
∂kG(k∗, ep1(i), i) ≤ 0. Recall that G(·, ·, i) is

strictly concave over O. Because

∂

∂e
G(k∗, ep1(i), i) = 0 and

∂

∂k
G(k∗, ep1(i), i) ≤ 0

for all i ∈ [i∗∗, i2], it follows that ep(i) = ep1(i) for all i ∈ [i∗∗, i3] and hence the constrained efficient

outcome has kp = k∗.

Finally, by IFT again, ep(i) is continuously differentiable and for all i ∈ (i∗, i3],

(ep)′(i) = − ∂2

∂e∂i
G(k∗, ep(i), i)/

∂2

∂e2
G(k∗, ep(i), i).

We have shown that ∂2

∂e2
G(k∗, e∗, i∗∗) < 0. Now,

∂2

∂e∂i
G(k∗, e∗, i∗∗) = e∗α(1/e∗)[u′′(q∗)− c′′(q∗)][f ′(u(q∗))]2ge(e

∗, i∗∗)gi(e
∗, i∗∗) > 0,

because

ge(e
∗, i∗∗) =

e∗ψ′′(e∗)

i∗∗
+
ψ′′(e∗)α(1/e∗) + ψ′(e∗)α′(1/e∗)/(e∗)2

α(1/e∗)2
> 0, gi(e

∗, i∗∗) =
e∗ψ′(e∗)− ψ(e∗)

(i∗∗)2
< 0.

So d
die

p(i∗∗) > 0 and, by continuity, there is ī′ ∈ (i∗∗, i3] such that d
die

p(i) > 0 for all i ∈ [i∗∗, ī′]. �

(3) Recall from Lemma 1 that for any i and in any constrained-efficient outcome w.r.t. i, ep(i) ≤ ê.
Note that the arguments there are not affected by the presence of capital. Moreover, by (63), we

have

zp(i) ≤ ep(i)α(1/ep(i))[u(qp(i))− c(qp(i))]/i ≤ êα(1/ê)[u(q∗)− c(q∗)]/i.

Again, we prove the result by two claims below. Claim 3 show that W(i), the welfare associated

with a constrained-efficient outcome under i, is arbitrarily close to Wk as i goes to infinity.

Claim 3. For any ε > 0, there exists iε for which i > iε implies W(i) ≤ Wk + ε.

Because it is always feasible to set z = 0 and hence W(i) ≥ Wk for all i, the result that

limi→∞W(i) = Wk follows immediately from Claim 3. By Lemma 2, if we impose the additional
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constraints z = 0 and k = k∗, then the resulting maximum welfare, denoted W0, is strictly less

than Wk, and hence [Wk −W0]/2 > 0. The following claim shows that, if we impose k = k∗, then,

for i sufficiently large, the maximum achievable welfare is less than Wk − [Wk −W0]/2. �

Claim 4. Define W0(i) to be the maximum welfare achievable by outcomes satisfying k = k∗,

together with constraints (63)-(66). There exists an î such that for all i > î, W0(i) <Wk − [Wk −
W0]/2.

Claim 4 implies that for all i > î, kp(i) > k∗, for otherwiseW(i) =W0(i) <Wk, a contradiction.

Now we prove the two claims.

Proof of Claim 3. First note that in any constrained-efficient outcome, qp(i) ≤ q∗ and kp(i) ≤ k̂.

For each i, define k̃(i) by the capital stock that satisfies

F ′(k̃(i))k̃(i)− F ′(k̂)k̂ =
êα(1/ê)[u(q∗)− c(q∗)]

i
.

Because the function F ′(k)k is strictly increasing in k with range R+, k̃(i) is well-defined and is a

decreasing function of i. Moreover, as i→∞, k̃(i) converges to k̂.

Let S(k) = F ′(k)k. Given ε > 0, let iε be so large that i > iε implies

{1 + r − F ′[k̃(i)]}[k̃(i)− k̂] ≤ ε, S′(k̃(i))(1 + i) ≥ 1 + r. (74)

Note that iε is well-defined because k̃(i) converges to k̂ and S′ is a decreasing function.

Now we show that if i > iε, then W(i) ≤ Wk + ε. Fix some i > iε, and a constrained-efficient

outcome, (qp(i), dpz(i), d
p
k(i), z

p(i), kp(i), ep(i)). Consider an alternative outcome

(q′, d′z, d
′
k, z
′, k′, e′) = (qp(i), 0, d′k, 0, k

′, ep(i)),

where k′ and d′k are such that

F ′(k′)k′ − F ′[kp(i)]kp(i) = zp(i) ≤ êα(1/ê)[u(q∗)− c(q∗)]
i

, (75)

F ′(k′)d′k = F ′[kp(i)]dpk(i) + dpz(i). (76)

Note that k′ ≤ k̃(i). Now we show that the outcome (q′, d′z, d
′
k, z
′, k′, e′) satisfies incentive com-

patibility constraints (63)-(66) and has welfare equal to W ′ ≥ W(i) − ε. Note that, by definition,

W ′ ≤ Wk and hence this implies that Wk ≥ W(i)− ε.
First consider the buyer’s participation constraint, (63). Because the original outcome satisfies
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(63), it suffices to show that

−izp(i)− [1 + r − F ′(kp(i))]kp(i) ≤ −[1 + r − F ′(k′)]k′,

which holds if and only if

(1 + r)(k′ − kp(i))− zp(i) ≤ izp(i)⇔ (1 + r)(k′ − kp(i)) ≤ (1 + i)zp(i)⇔ zp(i)

k′ − kp(i)
≥ 1 + r

1 + i
.

By definition of k′, zp(i) = F ′(k′)k′ − F ′(kp(i))kp(i) and hence (note that k′ ≤ k̃(i)), by (74),

zp(i)

k′ − kp(i)
=
F ′(k′)k′ − F ′(kp(i))kp(i)

k′ − kp(i)
≥ S′(k′) ≥ S′(k̃(i)) ≥ 1 + r

1 + i
.

In addition, because k′ ≥ kp(i) and because of (76), the alternative outcome satisfies (64)–(66).

Here we show that W ′ ≥ W(i)− ε. First note that

[F (kp(i))− (1 + r)kp(i)]− [F (k′)− (1 + r)k′] ≤ [F ′(k′)− (1 + r)][kp(i)− k′] = [1 + r − F ′(k′)][k′ − kp(i)].

Then, note that, in terms of variables relevant to the welfare, the alternative outcome differ from

the original outcome only in the capital stock, and hence the difference in welfare, W ′ −W(i), can

be written as

W ′ −W(i) = −{[F (kp(i))− (1 + r)kp(i)]− [F ′(k′)− (1 + r)k′]} ≥ −[1 + r − F ′(k′)][k′ − kp(i)]

≥ −[1 + r − F ′(k̃(i))][k̃(i)− k̂] ≥ −ε.

The second last inequality follows from the fact that k′ − kp(i) = zp(i) ≥ k̃(i) − k̂ and the fact

that the function S(k) = F ′(k)k is concave in k, and the last inequality follows from (74). Hence,

W ′ ≥ W(i)− ε. �

Proof of Claim 4. We show that for any ε > 0, there exists i′ε such that W0(i) < W0 + ε for all

i > i′ε. The claim follows immediately.

Because W0(i) > 0 (as it is always feasible to set k = k∗, q such that c(q) = (1 + r)k∗, and

e that solves ψ′(e)/α(1/e) = [u(q) − (1 + r)k∗] > 0) for all i, we can find a lower bound q and e

such that for any outcome (q0(i), d0
z(i), d

0
k(i), z

0(i), k0(i), e0(i)) that achieves the maximum welfare

under the constraints (63)-(66) plus k = k∗, we have q0(i) > q and e0(i) > e for all i. Because

i > i∗∗, at the optimum we must have d0
z(i) = z0(i) and d0

k(i) = k∗. Moreover, it follows that we

can choose u(q) to be strictly greater than (1 + r)k∗, for otherwise the buyer will have arbitrarily
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small surplus and hence the search intensity will be arbitrarily small as well.

Now, the welfare, as a function of (q, k, e), is continuous and hence is uniformly continuous in

[q, q∗] × {k∗} × [e, ê]. Thus, there exists δ > 0 such that if ‖(q, e) − (q0(i), e0(i))‖ < δ, then the

welfare associated with (q, k∗, e), differs from the welfare W0(i) by less than ε for all i.

Let l(e) = ψ′(e)/α(1/e). Then, l′(e) > 0 for all e ∈ [e, ê] and hence A = mine∈[e,ê] l
′(e) > 0. Let

i′ε be so large that if i > i′ε,

max{2, 1 + u′(q)/A} [u(q∗)− c(q∗)]
c′(q/2)i

< min{q/2, δ/2, q − u−1[(1 + r)k∗]}, (77)

Fix an i > i′ε and an outcome (q0(i), z0(i), k∗, e0(i)) that achieves W0(i). We construct an alterna-

tive outcome, (q′, 0, k∗, e′) such that ‖(q′, e′)− (q0(i), e0(i))‖ < δ and satisfies (63)-(66). Then, the

welfare associated with the alternative outcome, denoted byW ′, is within ε ofW0(i), butW ′ ≤ W0.

The outcome (q′, 0, k∗, e′) is given by

c(q′) = c(q0(i))− z0(i) ≥ 0 and
ψ′(e′)

α(1/e′)
= u(q′)− (1 + r)k∗.

Because z0(i) ≤ [u(q∗) − c(q∗)]/i, it follows from (77) that q′ ≥ q/2 and that u(q′) ≥ (1 + r)k∗.

Moreover, because (q0(i), z0(i), k∗, e0(i)) satisfies (64),

−c(q′) + (1 + r)k∗ = −c(q0(i)) + z0(i) + (1 + r)k∗ ≥ 0,

and hence (q′, 0, k∗, e′) satisfies (64) as well. Note that it also satisfies (63) and (66) by construction.

Thus, we have

0 ≤ c(q0(i))− c(q′) ≤ z0(i) ≤ êα(1/ê)[u(q∗)− c(q∗)]
i

,

and so, by (77),

|qo(i)− q′| ≤ |c(q0(i))− c(q′)|/c′(q/2) ≤ δ/2.

By (66),

|l(e0(i))−l(e′)| = |ψ′(e0(i))/α(e0(i))−ψ′(e′)/α(1/e′)| = |u(q0(i))−u(q′)−z0(i)| ≤ u′(q/2)[q0(i)−q′]+z0(i),

and so, by (77),

|e′ − e0(i)| ≤ (1/A)[u′(q/2)[q0(i)− q′] + z0(i)] < δ/2.

Thus, we have ‖(q′, e′) − (q0(i), e0(i))‖ < δ, and hence W0 ≥ W ′ > W0(i) − ε. Finally, take

î = i′
[Wk−W0]/2

. �
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Proof of Lemma 3

The necessity of those conditions are established in the main text. The sufficiency follows exactly

the same arguments as those in the proof of Proposition 1. Note that as n → 1, α(1/n) → 0, it

follows that (32) cannot be satisfied at np = 1 with v > 0. �

Proof of Proposition 4

First we give a lemma.

Lemma 4. Let z̄i = {[u(q∗) − c(q∗)] − v}/i and let k̄ = {[u(q∗) − c(q∗)] − v}/(1 + r − A). Then,

There exists (dpz, d
p
k) ≤ (zp, kp) such that (qp, dpz, d

p
k, z

p, kp, np) is a constrained-efficient outcome if

the tuple (qp, zp, kp, np) solves

max
(q,z,k,n)∈[0,q∗]×[0,z̄i]×[0,k̄]×[0,n∗]

nα(1/n)[u(q)− c(q)]− nv − n(1 + r −A)k (78)

subject to

−iz − (1 + r −A)k + α(1/n)[u(q)− z −Ak]− v = 0, (79)

−c(q) + z +Ak ≥ 0. (80)

Moreover, if the first best allocation is not implementable, then for any constrained-efficient out-

come, (qp, zp, kp, np) solves (78)–(80).

Proof. For any solution, (qp, kp, np), that satisfies (78)-(80), the outcome

(qp, dpz, d
p
k, z

p, kp, np) = (qp, zp, kp, zp, kp, np)

also satisfies (32)-(34). Here we show that, if the first-best is not implementable, then for any

constrained-efficient outcome, (qp, dpz, d
p
k, z

p, kp, np), dpz = zp, kp = dpk, and (qp, zp, kp, np) satisfies

(78)-(80) and belongs to the set [0, q∗]× [0, z̄]× [0, k̄]× [0, n∗]. Notice that if qp > q∗, then we may

decrease qp and increase zp to keep the buyer’s surplus and (32) unchanged but welfare is increased.

So qp ≤ q∗. Moreover, if np > n∗, then, because qp ≤ q∗, we may decrease np and increase zp to

keep (32) unchanged but the welfare is increased. This also implies the pairwise core requirement

is satisfied.

Now suppose that (qp, dpz, d
p
k, z

p, kp, np) maximizes welfare subject to (32)-(34) and the pairwise-

core. We show that (a) kp = dpk and (b) zp = dpz.

(a) Suppose, by contradiction, that kp > dkp. Then we may decrease kp (and increase zp propor-

tionally to keep (32) unchanged) and increase W, a contradiction.
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(b) We consider two cases.

(b.1) Suppose that qp < q∗ and zp > dpz. Let d′z = dpz+ε < zp be such that u(q′) = u(qp)+ε ≤ u(q∗).

Then,

−izp−(1+r−A)kp+α(1/np)[u(q′)−d′z−Ad
p
k] = −izp−(1+r−A)kp+α(1/np)[u(qp)−dpz−Ad

p
k] = v,

and

−c(q′) + d′z +Adpk = −[c(q′)− c(qp)− ε] + [−c(qp) + dpz +Adpk]

≥ ε− c′(q′)(q′ − qp) ≥ ε− u′(q′)(q′ − qp) ≥ ε− [u(q′)− u(qp)] = 0.

Thus, (qp, d′z, d
p
k, z

p, kp, np) is implementable but has higher welfare as q′ > qp, a contradiction.

(b.2) Suppose that qp = q∗ and zp > dpz. If np < n∗, then we can decrease zp alone (without changing

dpz) and increase np to keep (32) satisfied but increase the welfare, a contradiction. Suppose that

np = n∗. Because the first-best is not implementable, kp = dpk > 0. Then we may increase dpz and

decrease kp to make d′z +Ak′ = dpz +Akp while changing zp so that (32) is satisfied. Note that this

is possible because zp > dpz. Then, the welfare is increased, a contradiction. �

Proof of Proposition 4 proper.

First we consider a pure currency economy without capital. In that case, an outcome consists

of (qp, dpz, zp, np). We have the following claim.

Claim 0. Consider an economy without capital, that is, with the additional restriction that k = 0.

There exists (dpz, zp) such that (qp, dpz, zp, np) is a constrained-efficient outcome if the pair (qp, np)

solves

max
(q,n)

nα(1/n)[u(q)− c(q)]− nv (81)

subject to α(1/n)[u(q)− c(q)] ≥ ic(q) + v. (82)

Proof. Suppose that (qp, dpz, zp, np) is a constrained-efficient outcome and suppose that (q0, n0)

solves (81)-(82).

First we prove that (qp, np) solves (81)-(82). Note that by implementability,

−izp + α(1/np)[u(qp)− dpz] = v, zp ≥ dpz, −c(qp) + dpz ≥ 0,

and hence

α(1/np)u(qp)− v ≥ [i+ α(1/np)]dpz ≥ [i+ α(1/np)]c(qp).

This shows that α(1/np)[u(qp) − c(qp)] ≥ v + ic(qp), i.e., (qp, np) satisfies (82). Now suppose that
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(q0, n0) gives a higher value than (qp, np) to (81). Let

z0 = d0
z =

α(1/n)u(q0)− v
i+ α(1/n)

.

Then, (q0, d0
z, z

0, n0) is implementable (note that the pairwise core requirement is satisfied because

z0 = d0
p), a contradiction to (qp, dpz, zp, np) being constrained efficient. So (qp, np) solves (81)-(82).

Conversely, we show that (q0, d0
z, z

0, n0) is constrained efficient. Suppose that it is not. Because

it is implementable, it follows that (qp, dpz, zp, np) gives a higher value to (81) than (q0, d0
z, z

0, n0).

But (qp, np) satisfies (82) and this leads to a contradiction to the fact that (q0, n0) solves (81).

Now we turn to the proof of Proposition 4 proper.

(1) Let i ∈ [0, i∗]. Then, by Claim 0, to show that the first-best allocation, (q∗, n∗) and k = 0, is

implementable, it is sufficient to show that (q∗, n∗) satisfies (82), that is,

i ≤ α(1/n∗)[u(q∗)− c(q∗)]− v
c(q∗)

= i∗.

(2) Suppose that i > i∗. We prove the result by four claims. The first two claims consider the

economy without capital, that is, with the additional constraint k = 0, and, by Claim 0, is concerned

with the problem (81)-(82). Claim 1 shows that the constraint (82) binds at the optimum while

Claim 2 shows that the optimal np decreases with i for a neighborhood of i∗. Claims 3 and 4 show

that the constraint k = 0 is binding when A > Ā or v > v̄ for a neighborhood of i∗.

Claim 1. Consider the economy without capital and suppose that i > i∗. Then, (82) binds at the

optimum for the problem (81)-(82), and q < q∗ at the optimum.

The problem with (82) at equality simplifies to a choice of n: let q = g(n, i) > 0 solve

α

(
1

n

)
[u(g(n, i))− c(g(n, i))] = ic(g(n, i)) + v,

and then, substituting q by the function g, we may rewrite the objective function (81) as

nα(1/n){u[g(n, i)]− c[g(n, i)]} − nv = n · i · c[g(n, i)].

Thus, by Claim 1, the problem (81)-(82) can be reduced to

max
n∈[0,n∗]

n · i · c[g(n, i)]. (83)
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Claim 2. Consider the economy without capital and consider the corresponding maximization

problem (83). There exists ī′ > i∗ such that for each i ∈ (i∗, ī′], there exists a unique np(i) that

solves its associated F.O.C., and that is the global maximizer of the problem. Moreover, the outcome

(qp(i), np(i)) = [g(np(i), i), np(i)] is the unique constrained-efficient outcome with d
din

p(i) < 0.

Claim 2 shows that if we impose the constraint that k = 0, then for a range of inflation rates

above i∗, there is a unique constrained-efficient outcome for each i in that range with the number

of buyers entering the DM decreases with i. The next two claims show that the constraint k = 0

is binding in the economy with capital.

Claim 3. Consider the economy with capital and consider the problem (78)-(80). Suppose that

i > i∗. Then, the constraint (80) binds at the optimum and qp < q∗ at the optimum.

With (79) and (80) at equality, the problem becomes

max
(q,z,k,n)

nα(1/n)[u(q)− c(q)]− nv − n(1 + r −A)k

subject to

−iz − (1 + r −A)k + α(1/n)[u(q)− c(q)] = v

z +Ak = c(q).

Claim 4. For any i ∈ (i∗, i0], where i0 = α(1/n∗)[u(q)−c(q)]−v
c(q) > i∗, q < q∗ solves u′(q)

c′(q) = 1+
(

1+r−A
A

)
,

and for any constrained-efficient outcome, (qp(i), zp(i), kp(i), np(i)), kp(i) = 0.

By Claim 2 and Claim 4, and if we take ī = min{i0, ī′}, then for all i ∈ (i∗, ī], there is a unique

constrained-efficient outcome and kp(i) = 0, d
din

p(i) < 0. Now we prove the claims.

Proof of Claim 1. Consider the Lagrangian associated with the maximization problem (81) subject

to (82):

L(q, n;λ, νq, νn) = nα (1/n) [u(q)− c(q)]− nv

+ λ{−ic(q) + α(1/n)[u(q)− c(q)]− v},

where λ ≥ 0 is the Lagrange multiplier associated with (82). From the Kuhn-Tucker Theorem, the

first-order necessary conditions with respect to q and n are

[α(1/np)(np + λ)][u′(qp)− c′(qp)]− λic′(qp) = 0 (84)[
α(1/np)− α′(1/np)

(
1

np
+

λ

(np)2

)]
[u(qp)− c(qp)] = v. (85)
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To show that (82) binds for i > i∗; i.e. λ > 0, suppose by contradiction that λ = 0. Given v > 0

and (82) holds with strict inequality, qp > 0 and np > 0. Hence, from (84) and (85), qp = q∗ and

np = n∗, a contradiction. Thus for i > i∗, λ > 0 and hence (80) binds.

To verify that qp < q∗ for all i > i∗, first note that from (84), qp 6= q∗ unless λ = 0, which is

violated when i > i∗. Now suppose qp > q∗ and consider a deviation that decreases qp to q∗, which

still satisfies (80). This produces higher welfare and is incentive feasible, a contradiction. Hence

qp < q∗. �

Proof of Claim 2. Fix some i > i∗. Define

f(n, i) ≡ i{c[g(n, i)] + nc′[g(n, i)]gn(n, i)},

that is, f(n, i) = ∂
∂n{n · i · c[g(n, i)]}. We apply the Implicit Function Theorem (IFT) in the

neighborhood of the first-best to obtain a solution to f(n, i) = 0. To do so, we first determine the

signs of the second derivatives, fn(n∗, i∗) and fi(n
∗, i∗).

Let h(q) = u(q)− c(q). Since h′(q∗) = 0, we have

gn(n∗, i∗) = − c(q∗)

n∗c′(q∗)
< 0; gi(n

∗, i∗) = − c(q∗)

i∗c′(q∗)
< 0;

gni(n
∗, i∗) =

c(q∗)

i∗n∗c′(q∗)
+
c(q∗)2[α(1/n∗)h′′(q∗)− i∗c′′(q∗)]

(i∗)2n∗[c′(q∗)]3
;

gnn(n∗, i∗) =
i∗α′′(1/n∗)h(q∗)c′(q∗) + α′(1/n∗)h(q∗)

[
n∗c(q∗)
c′(q∗) [α(1/n∗)h′′(q∗)− i∗c′′(q∗)] + 2n∗i∗c′(q∗)

]
(i∗)2[c′(q∗)]2(n∗)4

.

Thus,

f(n∗, i∗) = i∗[c[g(n∗, i∗)] + n∗c′[g(n∗, i∗)]gn(n∗, i∗)] = 0.

Moreover for i∗ > 0, the second partial derivatives are

fn(n∗, i∗) = i∗
{
n∗c′′[g(n∗, i∗)]g2

n(n∗, i∗) + n∗c′[g(n∗, i∗))]gnn(n∗, i∗) + 2c′[g(n∗, i∗)]gn(n∗, i∗)
}

=
α′′(1/n∗)h(q∗)

(n∗)3︸ ︷︷ ︸
(−)

+
α′(1/n∗)h(q∗)

{
n∗c(q∗)
c′(q∗) [α(1/n∗)h′′(q∗)]

}
i∗c′(q∗)(n∗)3︸ ︷︷ ︸

(−)

< 0.
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fi(n
∗, i∗) = i∗

{
c′[g(n∗, i∗)]gi(n

∗, i∗) + n∗c′′[g(n∗, i∗)]gn(n∗, i∗)gi(n
∗, i∗) + n∗c′[g(n∗, i∗)]gni(n

∗, i∗)
}

+ c[g(n∗, i∗)] + n∗c′[g(n∗, i∗)]gn(n∗, i∗)︸ ︷︷ ︸
= 0

=
c(q∗)2α(1/n∗)h′′(q∗)

i∗[c′(q∗)]2︸ ︷︷ ︸
(−)

< 0.

Since f(n∗, i∗) = 0 and fn(n∗, i∗) < 0, by the Implicit Function Theorem, there exists an open

neighborhood (n0, n1)× (i0, i1) around the first-best (n∗, i∗) and a continuously differentiable func-

tion, np : (i0, i1) → (n0, n1) such that for i ∈ (i∗, i1), the function np(i) gives the unique value of

n ∈ (n0, n1) such that

f [np(i), i] = 0.

Because fn(n∗, i∗) = 0 and because f is continuously differentiable, the objective function is locally

concave and hence for some i2 ∈ (i∗, i1], np(i) is the local maximizer for the objective function.

Following similar arguments as those used in Proposition 2 (2), we can also show that np(i) achieves

a maximum globally. Moreover, by the IFT again, for all i ∈ (i∗, i2],

d

di
np(i) = − fi[n

p(i), i]

fn[np(i), i]
.

Because fn(n∗, i∗) < 0 and fi(n
∗, i∗) < 0, and because f is continuously differentiable, there exists

ī′ ∈ (i∗, i2] for which if i ∈ (i∗, ī′], then fn[np(i), i] < 0 and fi[n
p(i), i] < 0 and hence d

din
p(i) < 0.

Finally, (qp(i), np(i)) = (g(np(i), i), np(i)) is a constrained-efficient outcome follows directly from

Claim 0 and Claim 1. �

Proof of Claim 3. Consider the Lagrangian associated with (78)-(80), z ≥ 0, and k ≥ 0:

L(q, z, k, n;λ, µ, νz, νk) = nα(1/n)[u(q)− c(q)]− nv − n(1 + r −A)k

+ λ{−iz − (1 + r −A)k + α(1/n)[u(q)− z −Ak]− v}

+ µ{−c(q) + z +Ak}

+ νzz + νkk,

where λ, µ ≥ 0, νz ≥ 0, and νk ≥ 0 are the Lagrange multipliers associated with (79), (80), z ≥ 0,

and k ≥ 0 respectively. The first-order necessary conditions with respect to q, z, k, n and the
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Figure 27: Money and Capital When Aγ > 1

complementary slackness conditions for z ≥ 0 and k ≥ 0 are respectively

[α(1/np)(np + λ)]u′(qp)− [npα(1/np) + µ]c′(qp) = 0 (86)

λ[i+ α(1/np)] = µ+ νz (87)

−(1 + r −A)(np + λ) +A(µ− λα(1/np)) + νk = 0 (88)[
α(1/np)− α′(1/np)/np

]
[u(qp)− c(qp)]− (1 + r −A)kp

−λ[α′(1/np)/(np)2][u(qp)− zp −Akp] = v (89)

νzz
p = 0 (90)

νkk
p = 0. (91)

(i) To show that (80) binds for all i > i∗, i.e. µ > 0, we consider two cases.

(a) At the optimum, kp > 0. Suppose by contradiction that (80) does not bind, i.e. µ = 0.

Consider (z′, k′) such that 0 ≤ k′ < kp and z′ + Ak′ = zp + Akp. By continuity, the allocation

(qp, z′, k′, np) still satisfies the seller’s participation constraint, (80). But since k′ < kp, this leads

to higher welfare, a contradiction.

(b) At the optimum, kp = 0. Suppose by contradiction that (80) does not bind, i.e. µ = 0. Then

(80) holds with strict inequality and given kp = 0, we have zp > 0. Hence νz = 0 and from (87),

λ = 0. Hence qp = q∗, np = n∗, and kp = 0, which implies that the first-best is implementable for

i > i∗, a contradiction. Hence (80) binds.

We now show that that qp < q∗ for all i > i∗. First note that qp 6= q∗ unless λ = 0 and νz = 0

which is violated when i > i∗. Now suppose qp > q∗ and consider a deviation such that qp decreases

to q∗ and real balances are reduced to z′ = zp − [u(qp)− u(q∗)] ≥ c(q∗). As z′ < zp, this deviation

leads to higher welfare and is incentive feasible, a contradiction. Hence qp < q∗ for i > i∗. �
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Proof of Claim 4. (a) First consider the case where Aγ ≤ 1, or, equivalently, A(i+ 1) ≤ 1 + r. This

means the rate of return on capital, F ′(k) = A, is less than or equal to the rate of return on fiat

money, γ−1. Suppose that kp(i) > 0. Then, let k′ = kp(i)−ε > 0 and let z′ = zp(i)+[(1+r−A)ε]/i.

Then (qp(i), z′, k′, np(i)) satisfies (79) and (80). Notice that −izp(i) − (1 + r − A)kp(i) = −iz′ −
(1 + r −A)k′ by construction and

z′ +Ak′ = zp(i) +Akp(i) + [1 + r − (1 + i)A]ε/i ≥ zp(i) +Akp(i)

because 1 + r− (1 + i)A ≥ 0. Obviously the new outcome, (qp(i), z′, k′, np(i)), is welfare-improving.

(b) Suppose now that Aγ > 1 so that capital has a higher rate of return than fiat money. Given i

and v and a choice of q and n, (79) and (80) at equality implies a unique solution for z and k given

by

z(q, n, i) =
−(1 + r −A)c(q) +Aα(1/n)[u(q)− c(q)]−Av

−(1 + r) +A(1 + i)

= β

{
−(1 + r −A)c(q) +Aα(1/n)[u(q)− c(q)]−Av

Aγ − 1

}
,

k(q, n, i) =
−α(1/n)[u(q)− c(q)] + ic(q) + v

−(1 + r) +A(1 + i)

= β

{
−α(1/n)[u(q)− c(q)] + ic(q) + v

Aγ − 1

}
.

With Aγ > 1 and v > 0, z(q, n, i) is a concave function of q while k(q, n, i) is a convex function

of q as illustrated in Figure 27. Given i, using the fact that (79) holds at equality, the objective

function simplifies to a choice of q and n:

max
q,n

n · i · z(q, n, i)

subject to k(q, n, i) ≥ 0. Consider first the q0 such that k(q0, n, i) = z(q0, n, i). Then, z(q, n, i) =

c(q0)/(A + 1). While for q1 such that k(q1, n, i) = 0, z(q, n, i) = c(q1) > c(q0)/(A + 1) as q0 < q̄.

Now we show that for all n ∈ [0, n∗], and hence α(1/n) ∈ [α(1/n∗), 1], zq(q, n, i) > 0 if q > q1. Now,

zq(q, n, i) = β

{
−(1 + r −A)c′(q) +Aα(1/n)[u′(q)− c′(q)]

Aγ − 1

}
,

and hence it suffices to show that zq(q
1, n, i) ≤ 0, that is,

−(1 + r −A)c′(q1) +Aα(1/n)[u′(q1)− c′(q1)] ≤ 0.
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It suffices to show that q1 ≥ q̄, that is, k(q̄, n, i) ≥ 0, as for all n ∈ [0, n∗],

−(1 + r −A)c′(q̄) +Aα(1/n)[u′(q̄)− c′(q̄)] ≤ −(1 + r −A)c′(q̄) +A[u′(q̄)− c′(q̄)] = 0.

Suppose by contradiction that q > q1. Then

−α(1/n)[u(q̄)− c(q̄)] + ic(q̄) + v ≤ −α(1/n∗)[u(q̄)− c(q̄)] + ic(q̄) ≤ 0

as i ≤ i0. Notice that i0 > i∗ because, as we have assumed,

v <
α(1/n∗)[c(q∗)(u(q̄)− c(q̄))− c(q̄)(u(q∗)− c(q∗))]

c(q∗)− c(q̄)
.

(3) Because A = 0, by Claim 0, a constrained-efficient outcome satisfies

α(1/n)[u(q)− c(q)] ≥ ic(q) + v.

For each i ∈ R+, let q̃i solves

u′(q̃i)− c′(q̃i) = ic′(q̃i).

By concavity of u and convexity of c, one can verify that q̃i decreases with i and q̃i → 0 as i→∞.

Then, for all q ∈ R+ and for all n ∈ [0, 1],

α(1/n)[u(q)− c(q)]− ic(q) ≤ [u(q̃i)− c(q̃i)]− ic(q̃i).

Let ī be such that

[u(q̃ī)− c(q̃ī)] = v.

Then, if i > ī, for all n ∈ [0, 1] and for all q ∈ R+,

α(1/n)[u(q)− c(q)]− ic(q) ≤ [u(q̃ī)− c(q̃ī)]− īc(q̃ī) < v.

So the only feasible allocation is autarky. �

(4) By (3), if i > ī and if kp = 0, then the outcome must be autarky. However, because Wc > 0,

there is an outcome with kp > 0 with welfare Wc. So we must have kp > 0. �
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